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J. HASTAD AND S. KHOT

1 Introduction

The celebrated PCP Theoren2]([[1]) gives a way of writing proofs for (purported) NP statements
such that the proofs can be checked very efficiently by a probabilistic verifier. The verifier needs a very
limited amount of random bits and reads only a constant number of bits from the proof. Moreover, a
correct statement always has a proof that is accepted with probability 1 (or close todnygmdof of

an incorrect statement is accepted only with a tiny probability (called error probability or soundness).

PCPs have surprising connections, first discovered by Feige éalo [napproximability results,

i. e., results showing that computing even approximate solutions to some NP-complete problems is hard.
The discovery of the PCP Theorem opened up a whole new fascinating direction for proving various
inapproximability results. In the last decade or so, quantitative improvement in the efficiency of PCP
verifiers has led to (in many cases optimal) inapproximability results for many optimization problems
(I3, [4], [14], [13], [12], [6]). For different applications, different aspects of the given PCP need to be
optimized. For a detailed discussion of various parameters we refél to [

In the current paper we are mostly concerned with making efficient use of queries, i.e., to obtain
very strong PCPs where the verifier reads very few symbols in the proof. More specifically, we are
interested in the trade-off between the number of queries and the error probability.

Samorodnitsky and Trevisafhg] obtained very strong results along these lines, giving a PCP where
the verifier reads 2+ k? bits, almost always accepts a correct proof of a correct statement and accepts
a proof of an incorrect statement with probability only marginally larger thai.2This is a very
impressive result in that each read bit essentially decreases the probability of being fooled by a factor of
2. Their verifier achieveamortized query complexityf 1+ 6 for anyé > 0 which is optimal (seed]).

The amortized query complexity, when we (almost) always accept a correct proof, is formally defined
as the ratio between the number of queridsX&? in this case) and the logarithm of inverse of the error
probability 2 in this case).

The fact that the verifier sometimes rejects a correct proof of a correct statement is called imperfect
completeness and in their construction Samorodnitsky and Trevisan make essential use of this property
of the verifier. For many reasons it is preferable to have perfect completeness. Firstly, it is natural to
have a proof system where a correct proof of a correct statement is always accepted. Secondly, perfect
completeness is sometimes essential to obtain further results. Some inapproximability results such as
graph coloring sometimes make essential use of perfect completeness and when using a given protocol
as a subprotocol in future protocols, perfect completeness, to say the least, simplifies matters.

Several results in the past have focused on achieving PCPs with perfect completeness and this task
many times turns out to be harder than obtaining corresponding PCPs without this property. For instance,
Hastad shows that 3SAT and 4-Set Splitting are hard to approximate within%ra{'m These results
follow from the basic 3-bit PCP oflf3] establishing hardness for approximating the number of satisfied
linear equations mod 2. To extend these results to satisfiable instances, however, requires a new PCP
construction and a technically more complicated proof.

The main result of the current paper is to extend the result of Samorodnitsky and Trevisan to include
perfect completeness.

Theorem 1.1. For any integer k> 0 and anye > 0, any language in NP has a PCP verifier that queries
4k + k2 bits, has perfect completeness and accepts a proof of an incorrect statement with probability at
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most2 ¥ +¢.

Our result is based on a basic non-linear test which reads 3haits,, bz, bs, bs) from the proof
and accepts ib; = by © bz @ (bg A bs). We call this constraint Tri-Sum-And and let MAX-TSA be the
problem of satisfying the maximum number of such constraints. We have the following theorem.

Theorem 1.2. For any e > O, it is NP-hard to distinguish satisfiable instances of Max-TSA from those
where it is only possible to simultaneously satisfy a fracéoms of the constraints.

The choice to study Tri-Sum-And is somewhat arbitrary but guided by our goal to achieve perfect
completeness while keeping the analysis simple. To get perfect completeness we need a nonlinear
predicate while the analysis is greatly aided by having as much linearity as possible present in the
predicate. These two conflicting requirements led to the choice of Tri-Sum-And.

Note thatTheorem 1.4s tight for Max-TSA in that a random assignment satisfies half the con-
straints. There are stronger results for other constraints on 5 bits and in particular Guruswantet al. |
give a different predicate for which can be improved tg.

We then iterate the basic test underlyifigeorem 1.1n a way similar to that used by Samorodnitsky
and Trevisan, where they iterate the basic 3-bit test Agtatl. We present two iterated tests: The first,
which we call the “complete bipartite graph PCP,” is analyzed in a way analogous to the Samorodnitsky-
Trevisan analysis and the second, which we call the “almost disjoint sets PCP,” is analyzed in a way
analogous to how &istad and Wigdersord }] analyzed the test of Samorodnitsky and Trevisan.

By a standard reduction the PCP results imply the following theorem.

Theorem 1.3. The Boolean constraint satisfaction problem on k variables is hard to approximate within
ratio 2<-O(VK on satisfiable instances.

This should be contrasted with the approximation algorithm by Trevis@jtfhat shows that it is
possible to approximate the Boolean constraint satisfaction probleknvariables withinO(2%/k) on
satisfiable instances.

A test is called non-adaptive if which bits to read are decided before the first bit is read and hence
this set is independent of the actual proof. All the above mentioned PCPs are non-adaptive which is in
fact necessary to obtairheorem 1.3

If we allow adaptive tests then by making an iterated version of a te{ ind can get essentially
the same parameters as Samorodnitsky and Trevisan and thus simply gain perfect completeness.

Theorem 1.4. For any integer k> 0 and anye > 0, any language in NP has an adaptive PCP verifier
that queries2k + k? bits, has perfect completeness and accepts a proof of an incorrect statement with
probability at mos2 ¥ + ¢.

If we convert the test to be non-adaptive, this test would réad2x? different bits and hence this result
does not strictly dominat€heorem 1.1
We extend some of our results to non-Boolean domains and in particular we have the following theorem.

Theorem 1.5. For every prime p, the constraint satisfaction problem on k variables over an alphabet of
size p is hard to approximate within ratid“;PWR) on satisfiable instances.
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We hope that our results will be useful in the future to prove strong hardness results for approximate
graph coloring. One such result by Khéj js

Theorem 1.6 (P]). There is an absolute constantcO such that it is NP-hard to color a k-colorable
graph with I€'°9K colors.

Actually this result can be proved from the original form of the Samorodnitsky-Trevisan result and
perfect completeness is not strictly required. But using our PCP with perfect completeness, this result
becomes more straightforward. On a related note one can observe that perfect completeness is essential
in the hypergraph coloring results by Guruswamésthd and Sudarg], and in general it is a sub-
tle problem to determine which coloring inapproximability results require perfect completeness in the
underlying PCP.

1.1 Overview of the paper

This is the complete version of the extended abst@ctThe paper is organized as followSection2
introduces techniques used in this paperSattion3 we give our results for the Boolean casgec-
tion 3.1gives our basic 5-bit test, ar®kction3.2describes our iterated testectiond extends some of
the results oSection3 to non-Boolean domain&ection5 concludes with a few remarks.

2 The general setup

In this section we provide the necessary background.

2.1 Notation

Throughout the paper, we have Boolean functionstih notation with—1 as logical true. We use
multiplication to denote exclusive-of, for the logical AND function. As we use 1 to denote true we

have
14+X4+y—xy

2
Our default is that AND is highest level connective and in particular

XAy =AND(X,y) =

XYAZW= (Xy) A (zW) .

Addition is used only over the real and complex numbers.

2.2 The 2-prover protocol

Many efficient PCPs, such as the one givenlig][are conveniently analyzed using the formalism of an
outer and inner verifier. This could also be done here, but to avoid too much formalism we give a more
explicit analysis. Using the results df][(as explicitly done in4]) one can prove that there is a constant

¢ < 1 such that it is NP-hard to distinguish satisfiable 3-SAT formulas from those where only a fraction

c of the clauses can be simultaneously satisfied by any assignment. This formula can furthermore have
the property that any clause is of length exactly 3 and any variable appears in exactly 5 clauses.
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Given a 3-SAT formulap =C1 AC, ... AC which is either satisfiable or where one can only satisfy a
fractionc of the clauses, one can design a two-prover interactive proof system with Wrégefollows.

Basic two-prover protocol

1. V chooses a clausg uniformly at random and a variabig, again uniformly at random, appear-
ing inCy. V send< to proverP; andj to proverb..

2. V receives a value for; from P, and values for all variables appearingdafrom Py. V accepts if
the two values fok; agree and the clausz is satisfied.

It is not difficult to see that if a fractiow of the clauses can be satisfied simultaneously then the
optimal strategy oP; andP, convinces/ with probability (2+c)/3. Thus it is NP-hard to distinguish
the case when this probability is 1 and when it is some constant strictly smaller than 1. Note also that if
we start with a formula where each variable appears the same number of\firoesld first choose a
random variable and then a random clause containing that variable and get the same distribution.

To make the gap larger, one runs this protactimes in parallel resulting in the following protocol.

u-parallel two-prover protocol, 2PP(u)

1. V choosesi clausegCy )i ; uniformly at random and for eadhV chooses a variabbg,, again
uniformly at random, appearing @. V sendgk; )i ; to proverP; and( j;)i'; to proverpPs.

2. V receives values fqix;; )i, from P, and values for all variables appearing @y, );"; from Py. V
accepts if the two values fos;, agree for eachand all the picked clauses are satisfied.

We letU denote the set of variables sentRg i. e., (x;;){'_; while the set of variables th& gives
values to is denoted B§/. Note thatJ C W.

By the fundamental result by Rax1], the probability that the verifier accepts in 2RPwhen only a
constant fractiore < 1 of the clauses can be simultaneously satisfied is bounddglfey some absolute
constant; < 1. Let us formulate these properties for future reference.

Theorem 2.1. Let 2PRu) be the u parallel version of the basic two-prover protocol. Then if only a
fraction c< 1 of the clauses ap can be simultaneously satisfied, then no strategy e B can make
the verifier accept with probability greater thalf.cdHere @ < 1is a constant that only depends on c.

2.3 Long codes

To turn the protocol 2Pf) into a written proof that can be checked very efficiently, it is natural to, for
each question to eith&; or P,, write down the answer in coded form. As many other papers we use the
long codeintroduced by Bellare et al3].

Definition 2.2. The long codeof an assignmer € {—1,1}! is obtained by writing down for each
functionf : {—1,1}' — {—1,1}, the valuef ().

Thus the long code of a string of lengtlis a string of length 3. Note that even though a prover
is supposed to write down a long code for an assignment a cheating prover might write down a string
which is not the correct long code of anything. We analyze such arbitrary tables by Fourier expansion.
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2.3.1 Fourier analysis

In this section, we explain the basics of the Fourier method. Let
F= {f | {_17 1}t - {_17 1}}

and consider the vector space of all “tablds’F — R. Here the addition of two tables is defined as
pointwise addition and the dimension of this vector spadé&lis= 22 . One can define a natural inner
product on this space by letting the inner product of two taBleandA; be

(A, Ap) = 2—2tZA1(f)A2(f) .

Foro C {—1,1}, let x,, be a Boolean-valued (i. €{;-1,1}-valued) table defined as

Xa(f) = Hf(X) viedF.

Xeo

They, are calleccharacters The characters are multiplicative, i. e.,

Xa(f1f2) = xa(f1)xa(f2) -

The characters are in fact symmetricirand f but as we have used set notation éowe have

Xow (1) 20 (F) = Xowern () (2.1)

wherea; @ o is the exclusive-or of the characteristic vectors of the sgtand a,. Put differently,
o1 ® o is the set which is the symmetric differencecafand .

The set of characters (there are af them) forms an orthonormal basis for the vector space. Thus
any tableA can be expressed as

Af) = S Aualf) .

ac{T11

whereA,, are real numbers callegburier coefficientsthey can found as

Aw = (A 2e) = 2-2‘ZA<f>xa<f> :

If Aiis Boolean valued, we have Parseval's idenﬂ'tyA%, = 1. If Ais indeed a correct long code of a
stringx(©) thenA{Xm)} = 1 while all the other Fourier coefficients are 0.

In our protocols we pick a function uniformly and then often perform an analysis using the Fourier
expansion. The following lemma is simple but powerful.

Lemma 2.3. Assume that f is picked with the uniform distribution thendag 0,

Et[xa(f)]=0

while
Et[xo(f)]=1 .
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Using this lemma together witl2 (1) enables us to compute the expected value of products of char-
acters in a simple way.
We can, to a limited extent, put some restrictions on the tables produced by the prover.

Definition 2.4. A tableAis folded over true iA(f) = —A(—f) for any f.

Definition 2.5. A tableA is conditioned upon a functiom: {—1,1}' — {—1,1}, if A(f) = A(f A h) for
any f.

To make sure that an arbitrary table is folded we access the table as follows. For egddh-pir
we choose (in some arbitrary but fixed way) one representativeislithosen, then if the value of the
table is required af it is accessed the normal way by readid ). If the value at—f is required then
in this case alsé\(f) is read but the result is negated.-ff is chosen from the pair the procedures are
reversed.

Similarly we can make sure that a given table is properly conditioned by always re&dingh)
when the value foff is needed. Folding over true and conditioning can be done at the same time.

Let us now give the consequences of folding and conditioning for the Fourier coefficients. The
proofs are easy and left to the reader but they can also be foudd]in [

Lemma 2.6. If A is folded over true and\, # O0then|a| is odd and in particularx is non-empty.
Lemma 2.7. If A is conditioned upon h and,, + 0 then for every x «, h(x) is true (i. e., ix) = —1).

We will be working with setd) andW with the property thatl ¢ W and we letr : {—1, 1}V —
{—1,1}Y be the projection operator that maps an assignmeW tmits subassignment dh. For every
BC{-1,1}V, letn(B) C {—1,1}Y be defined as

n(B)={n(y)|yeB} .

We also need an operatas defined as follows : for ang C {—1, 1}V, m(B) C {—1,1}V is the set of
thosex which have an odd number of preimagegin. e.,

m(B) ={x|xe{-1,1}Y, [Bnz 1(x)|is odd} .

Note that these projection operators depend on the identitidsaofdW but as no confusion is likely to
arise we suppress this fact.
A function f with domain{—1,1}"Y can naturally be extended to domdin1, 1}V by simply using
the valuef (7(y)). We use the same symbol to denote this extended function and hope that no confusion
arises. We have the following simple lemma.

Lemma2.8.Letf C{-1,1}W UCW and f: {-1,1}Y — {-1,1}, then
x8(F) = Amo(p) (T) -
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3 Efficient PCPs for Boolean domains

In this section we convert 2RP&) to a PCP. We eliminate the provers by asking the prover to write down
the answer to each question (in encoded form). Furthermore, remembeer ithttie set olu variables
which are sent td in the two-prover protocol. For each possible detve ask the prover to write a
table,Ay, which is supposed to be the long code of the answdblmn questiorJ. We assume thay,
is folded over true.

Similarly W is the set of variables in the clauses sent t&; and letgy be the conjunction of the
clauses chosen. In the PCP we have a tdilg,which is a supposed to be the long code of the answer
of P, on questiotW. We assume tha is folded over true and conditioned upog.

3.1 Our basic test
We have the following basic test, defined using the conventions above.

Basic PCP
1. V choosedJ, W and gy as in 2PRu).

2. V chooses two functiong and f’ onU uniformly at random (i.e.f, f': {-1,1}Y — {-1/1}).

3. V chooses two functiongandg’ onW uniformly at random (i.eg,g : {-1,1}W — {-1,1}).V
defines a third functioh by setting, for eaclr € {—1,1}W, h(y) = g(y) f (z(y))(d (y) A f' (7 (y))).

4.V accepts iffBy (h) = Bw(g)Au (f) (Bw(g) AAu(F)).
We have the basic completeness lemma.
Lemma 3.1. The completeness of the basic PCP is 1.

Proof. In a correct proof of a correct theorem each table is a correct long code of a restriction of a given
global assignment to the set in question. If we denote this assignmenthiay By, (h) = h(z"(2))
wherenV is the projection ont&V and similarly for the other involved functions. The completeness
now follows from the definition oh. O

The main problem is to establish soundness.

Lemma 3.2. If the verifier in the basic test accepts with probability+ 0) /2 then there exists a strategy

for P, and B in 2PP(u) that makes the verifier accept with probabil§V). In particular if the protocol

2PP(u) is chosen to have sufficiently small soundness (by choosing u large enough), then the verifier in
the basic test accepts with probability at m¢st- 5) /2.

Proof. For readability we drop the subscripts and ésimstead ofAy; andB instead ofBy. Consider
the expression
1+ B(h)B(g)A(f)(B(g) AA(F))
> .
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This expression is 1 if the test accepts and 0 otherwise. Hence the probability of acceptance for the
test is the expectation of this expression over the choide bfg,g’,U, andW. The hypothesis of the
lemma implies that

Et.trg0.0wB(MB(QA(F)(B(g) AA(T))] =6 . (3.1)

Fix U,W, f" andg’ and let us study
Etg[B(h)B(g)A(T)] .
Replacing each function by its Fourier expansion we see that this equals

S BpBa,AcEs glxp, (fa(f' A))Xp,(9)Xa(F)]
B1.B2,0

which, using 2.1) andLemma 2.8 can be simplified to

S BB AcErglxp (' A Q) Xp108,(9) Xy (F)] - 3.2)
B1,B2,0t

UsingLemma 2.3the inner expected value is O unlgdis= > = B andnz(B) = a and otherwise it is
1. Thus the expected value iR.9) equals

S B3 Anpyas(f'Ad)
§
and hence we need to analyze

Evglxp(f'Ad)(B)AAT))] - (3.3)

We haveanb = %(1+ a+b—ab) and thus 8.3) equals

% (Elxs (' Ag)]+Elxs (' Ad)B()] +Elxs (' AG)AT)] — Elxs (' AG)B(GA(T)]) . (3.4)

Fix the value off’ and let
B'={ylyeB n f'(x(y)=-1} .

When averaging ovey, the first and third expected values B14) are 0 unlesg’ = 0 while the second
and the fourth expected values eqBgl andBg A(f’), respectively. To estimate the first and third terms
we note that the probability, over the choiceféfthat’ is empty is 217(B)l. For the other terms we set

a={x|xen(B) A f'(x)=-1}

and use the Cauchy-Schwarz inequality to obtain

1/2
Et Uéﬁ”] =27 1P) z ’éﬁﬁﬂfl(a)’ < 2w/ ( z élziﬂrcl(a)> < 2~ =Bz (3.5)
acr(B) acn(p)

THEORY OF COMPUTING, Volume 1 (2005), pp. 119-148 127


http://dx.doi.org/10.4086/toc

J. HASTAD AND S. KHOT

This implies that we get an overall upper bound on the left hand sid& Dfgs
Euw Z Bﬁ|Aﬂ (2717 Bl 4 2~Im(B) /2)] <Euw [z BZ| ‘21—\7f(ﬁ)\/2 7 (3.6)

and hence this expression is at ledstWe use this to establish good strategiesRpandP,. We first
establish that some parts of the given sum are small. We have the following resulfiffonenma 6.9]

Eul[lz(B) ] <IBI° . 3.7)

wherec is a constant and in fact= 3i5 is possible. Note that the expectation is taken only &vand is
true for anyw.
Let S5 = (4(6+2logs—1)/8)Y¢ and consider ang of size at leas§;. Since

E[lz(B)| Y] < 5/4(6+2logs 1)+

we conclude that the probability thiat(B)| < (6+2logd—?1) is upper bounded b§ /4. Thus for any3
of size at leas§; we have

Eu (2 1701/2) < Pr{a(B)] < (6-+210gs ] 422108 * < T 4 0 =9

and hence discarding terms wi| > Ss in (3.6) still keeps a sum of expected value at le&52.

Furthermore sincg g 8123 =1 we can discard any term quﬂz )| < 6/4 and not reduce the sum
by more thard /4. We conclude that the sum which is the right hand sid8d) (s at leasty /4 even if
we restrict summation t@ of size at mosgs and such thah;&ﬂz(ﬁ)\ > 3 /4.

Now consider the following strategy for the provékisandP.. On receivingV, P, choose$3 with
probabilityl_%lz3 and returns a randogne 3. Similarly on receiving &, P, choosesx with probabilityAé
and returns a randome . We note that sincé, B are folded over true, byemma 2.6the setsx and
B selected by the provers are always nonempty. Also, $niseconditioned upomy, by Lemma 2.7
everyy € 8 satisfies the formulay. The success-probability of the given strategy is at least

Euw

%BgAiz(ﬁ)mrl] . (3.8)

If we restrict summation t¢3| < Ss and]Aﬂz(B)| > 6/4, (3.9 is at least

Sg16/4 EU,W |: ‘Aﬂz ]

and, by the above reasoning, this expected value is atd¢dsind we get a lower bour@l(é/4)2 for
the success probability of the provers. This completes the prdofmina 3.2 O

The basic test reads 5 bitb;, by, bs, bs, bs) of the proof and checks whethbrbybz(bg A bs) =1
which is same ab; = by ® b3 @ (bg A bs) in {0,1} notation. Theorem 1.Zhow follows by a standard
procedure of replacing the bits in the proof by variables and asking for a proof that maximizes the
acceptance probability.
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3.2 lterated tests

We now extend our basic test in a query efficient way. We pick ond setd on it we pickk functions
(fi)l; andk functions(f])%_; andk sets(W){_, each with its pair of functiongg,gf). EachW is
picked uniformly from the set of possible companion in 2BRo the already picked. Thus for each
[, (U,W) appears with the same probability &s,W) in 2PRu). Note that is not independent o
for | #1’ as they are companions of the salthe

We perform the basic test for a certain set of quadru()fgsfj’,g|,g|’). We give strong analyses in
two cases each utilizing? quadruples. One is given by the constraiat j and is analyzed very much
as Samorodnitsky and Trevisal?] analyzed their tests. We call it the “complete bipartite PCP”.

The other set ok? quadruples is given by all triples, {,1) such thai + j +1 = 0 modk. The key
property of this set of triples is that any two different triples have at most one coordinate in common.
Hence we call it the “almost disjoint sets PCP”. This analysis, done in the stylasthH and Wigderson
[15], is substantially simpler and hence we give this proof first.

In either case we get a test that readtsi4? bits, has perfect completeness and soundness only
marginally higher than 2¢. Theorem 1.1can therefore be obtained either frafheorem 3.3elow

which analyzes the almost disjoint sets PCHlseorem 3.4vhich analyzes the complete bipartite test.

3.2.1 The almost disjoint sets PCP

We first define the test which is an iteration of the basic test studied in the last section. The test depends
on the parametar used in 2PRu) but we keep this dependence implicit to simplify notation.

textbfk-iterated almost disjoint sets PCP

1. V choosedJ as in 2PRu).

2. V chooses independentlysets(V\,{)}‘zl, that can appear witbl in 2PRu). EachW is chosen
with the distribution induced by 2RB), i. e., the distribution of the pald,W is the same as the
distribution ofU,W in 2PRu).

3. V chooses Rfunctions( fi)k_; and(f{)%_, onU uniformly at random.
4. ForeacH, 1< <k, V chooses two functiong andg; onW uniformly at random.

5. For each triplg, j,| such that + j +1 = 0 modk define a functiorh; by setting for eacly €
{—=L 1B hij(y) = g () fi(m(¥) (G (V) A F{(z(Y)))-

6. V accepts iffBw (hiji ) = Bw (91)Au (fi) (Bw (9)) AAu(f])) foralli + j+1 =0 modk.
We have the following theorem.

Theorem 3.3. The k-iterated almost disjoint sets test has completehessl soundnesa ¥ + df(‘”,
where ¢ is the constant frorfheorem 2.5and u is the parameter of the underlying 2-prover protocol.
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Proof. The completeness follows from that of the basic test and we need to analyze the soundness. For
readability let us replacéy by A andBy by B;. Let Zg denote the set of all triple@, j,I) such that
i+ j+1=0(modk).
Let Acc(i, j,|) be a variable that indicates whether the test given by the tfipjel ) accepts, taking
the value 1 if it does and 1 otherwise. Clearly

Acc(i, j,1) = By (hij )Bi (9)A(fi) (A(T) ABi(9))) -
Consider

1 A B
TAcel ) _ e ZQ Acc (i,j,) . (3.9)
(i,j,)€Zo S (i, l)e

This number equals 1 if the test accepts and is 0 otherwise and thus its expected value is the probability

that the test accepts. The term in the right hand side sumSwith equals 1 and to establish the theorem

it is sufficient to establish that any other term is bounded%ﬁ. Let Mg be the term corresponding to

S 0 and letTs be the expectation dils. We go on to establish strategies farand P, which makes

the verifier in 2PPu) accept with probabilityTs|°V. This is clearly sufficient to establish the theorem.
Suppose without loss of generality ti{atk, k) € Sand let us fix the values df, i #k, fj, j # kand

(W, a1,9) for | # kin such a way that the conditional expectatiorikzfremains at leasks. As the sets

in Zp only intersect in one point we can, up to a factak, write Mg as

Acc(k, k, k) |_| Acc(k, j,I) |_| Acc(i, k1) |_| Acc(i, j,k) (3.10)
(kj,1)ES ] 1k (i.k1)ESi,|#k (i, K)ES,i#k

as the rest of the variables are fixed. The three produc&bﬁ)(can be written ad) (fy), A2 (f/) and
B (gk, gp,) respectively, for some Boolean functioAs), A2 andB™.
Expanding the definition of Adk,k,k) and usingx Ay = X% for A(f,) A By(g}) we see that
(3.10 can be written as the sum of four terms of the form

Bk (hiii) A (Fi) A" (fi)C(gk, Gk) (3.11)

each with a coefficient /2, for some Boolean function®, A” andC closely related tAY), A@ and
B, To be more precise

A(fi) = Afig A (i)
A'(f) =A@ (f) or A'(fy) =A(f)AD(f)

and
C(9k 9k) = B(g)BY (g, g)  or  C(ak, Gk) = Br(k)Br(gk)BY (gk, g -

We want to prove that if the expectation & 10 is large then the prove® andP; in the two prover
game can convince the verifier of that protocol to accept with high probability. To this end we use the
tables in the given PCP to construct strategiesHoandP,. We need to be slightly careful since not
all derived tables can be used by a given prover as it might depend on information not available to this
particular prover.
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In the present situation the functioAsandA” depend only otJ and the fixations made and hence
are available for playel®, to design a strateg\By is the original long code oW and hence is useful
for extracting a strategy fd?,. Finally C is a function that depends on bdthandW and as this is not
fully known to eitherP; or P,, C is not useful for designing strategies.

Since we only have one remaining object of each type, let us for readability discard the index replac-
ing fx by f, W by W, etc.

We now want to compute the expected value &fL{) over random choices of, f/, g andd'.
Expanding all factors except’(f’) by the Fourier transform we get

S AuBsCyyErrgg [Xa(Fap(@f(F 7Gx (9)2y (@A (F)] (3.12)
a7B7’Y7’)/

Taking the expectation ovdrwe see, usingemma 2.3 that any term witho # () vanishes while
if we have equality the expectation is 1. Similarly, considering the expectatiorgover see that only
terms withf3 = y give a nonzero contribution. Finally, fixinff and considering expectation o\gr we
see that only terms witlf = 8 Nz—1(f'~1(—1)) remain nonzero.

This implies that .12 reduces to

EU,W,f’ zA;rg(ﬁ)Bﬂéﬁ,ﬁﬂnfl(f’*l(—l))Aﬁ(fl) (313)
B
and, fixingu andW, let us estimate
Ef’ zA;tz(ﬁ)éﬁéﬁ,ﬁﬂn’*l(f’*l(—l))Aﬁ(f/) . (314)
B
Towards this end we have
| Ev[Cp praaira A ()| < EollCsprrr(riapl] < (3.15)
1/2
2-|m(B)| z |Cﬁ7ﬁmrl(a,), < 2|7r(ﬁ)/2< z CAE.ﬁrm%a/)) .
o' Cx(p) aCx(p)
Substituting this estimate int@ (14 we get the upper estimate
1/2
%|A%2(B)Bﬁ|2_”<ﬁ Wz( )3 Cémrl(a/)) (3.16)
o'Cr(B)

and applying the Cauchy-Schwarz inequality ofehis is bounded by

1/2 1/2 1/2
22 A2 o|n(B 22 52 R12 o-|n(B
(% BRAZ 52 )> (Z Cm) < (%Bﬁ%w)z & )> : (3.17)

ﬁ 7[31
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which is our final upper bound for the absolute value of the expectatibl; @henU andW are fixed.
As E[X?] > E[X]? we have

Euw

~o A N 2
> BiAr )2 '”“”'] > Euw [|Er, 199 [Mg)?] = Euw [[Ev r1gg[Mgll]* > EMMg2 > T8 .
B

The rest of the proof now follows along the same lines as end of the proof for the basic test. In that
proof we had established that the right hand side8d)(was large and used this to derive strategies for
the provers. We now have proved that a very similar sum is large. The fact that we have réglaged

by A;ZZ(B) is only to our advantage. A&’ is a derived table we cannot make sure that it is folded over

true and thus wheR, picks o with probabilityA’j the seto might be empty. In this cad® might return
any assignment and we assume that the verifier rejects in this case. This does not disturb the analysis as
B is folded over true and hen¢g| is odd which implies thaty () is nonempty. O

3.2.2 The bipartite graph test
In this section we study the following test.
k-iterated bipartite graph PCP

1. V choosedJ as in 2PRu).

2. V chooses independentlysets(V\,{)}‘zl, that can appear witbl in 2PRu). EachW is chosen
with the distribution induced by 2RR), i. e., the distribution of the pald,W is the same as the
distribution ofU,W in 2PRu).

3. V chooses Rfunctions( fi)k_; and(f/)X_, onU uniformly at random.
4. ForeacH, 1 <1 <k, V chooses two functiong andgl’ onW uniformly at random.

5. For each pair,| define a functiorh; by setting for eacly € {—1, 1}W,
hii (y) = g (y) fi(z(y)) (@i (Y) A f{ (=(y))) -

6. V accepts iffBw (hi) = Bw (91)Au (i) (Bw (9)) AAu (f])) forall 1 <i,l <k.
We have the following theorem.
Theorem 3.4. The bipartite graph test has completeng&smnd soundnesz ™ + df(”).

Proof. The completeness is again not difficult and we leave it the reader to verify that iNdelecys
accepts a correct proof for a correct statement.

In the analysis of the soundness let us use notation similar to the one used in the previous proof, e.g.,
writing By instead ofBy; andA instead ofA,. Also define

Acc(i, 1) = By (hi)Bi (9)A(Ti) (A(F) ABi(d])
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which is 1 if the test involvindy accepts and-1 if the test fails. Now we want to calculate the expected
value of

ihekxk 2 s ih)es

Let Ts be the expectation of the product f8rand the goal is again to, for any nonempty Segive a
prover-strategy with success rafie|°(Y). We start by, as already done itd], reducing to the case of
specialSand letT,y be the result wheSis the edge set of the complete bipartite grapt2hx [d].

Lemma 3.5 ([L2]). For any nonempty S, there is an integer d such tfigt< |Toq|%/2.

Proof. As all coordinates are treated symmetrically me may, without loss of generality, assume that
(1,1) € Sand that(1,2),...(1,d) are the other vertices i connected to 1. Let us divide our random
choice of(fi, f/,01,9)i1=1.. k into X given by choice of f1, f{), andY given by choice of the rest. Let

S, be the subset ddgiven by(1,1),(1,2)...(1,d). Then

d

Ex.y| Acc(i,l)] = Ex y[[ TAcc(1,1) - Acc(i,1)] =
o (i,llzles | o E! (i?l)le_ls\sl |

Ex.v[F(X,Y)G(Y)] = By [Ex[F (X,Y)]G(Y)]

for some function$ andG with values in{—1,1}. Now applying the Cauchy-Schwarz inequality this
can be bounded by

VEAEFOYD2EGYE < /Evl(ExF(X.Y))? =
VEYEX[FOWLY)] Exg[FORY)] = /Exxy[F04.Y)-FO%.Y)]

whereXz, X, are identically distributed a% and are independent. The proof is completed by the obser-
vation thatF (X;,Y) - F(Xp,Y) is equal tof]®; Acc(1,1) - [T, Acc(2,1), which is exactly the same as
Ts whereS is a complete bipartite graph ¢2 x [d]. O

Thus it is sufficient to find a good strategy based/By| being large. Using the definition of Acc
and canceling the factoB;(g,) that appears exactly twice, we have

d
Tq=E [ |_!B| (ha)Bi (h2)A(fL)A(T2) (A(T)A(f2) A B (gf))] - (3.19)
|=

The functiong, affectsT,q only throughhy; andhy and replacingd (hy) andB (hy) by their Fourier
expansions we see that

Eq [Bi(hu)Bi(ha)] = Z B1 5,815, Eq [, (01 f1(di A F1)) g, (01 Fa(gf A 12))] =

ﬁ
> Bipxs(fifa)xs(fifang)) - (3.20)
B
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Substituting this into3.19 we get

d
E [ II_! (Z B 5,25 (faf2) 25 (f1 21 9|’)> A(f1)A(T2) (A(TD)A(T2)) ABI(g)) | - (3.21)
=L\B

Let us now consider the expectation o¥erand f,. If d is even then the dependence 8f21) on f;
and f5 is of the form

d
f1fo) .
IE!XBI( 1f2)

which has expected value 0 unlesgr,(f) = 0 while the expectation is 1 if we have equality.
If d is odd, then the dependencefefand f; is of the form

d
A( fl)A( fz) Il:!%ﬁ' ( f1 fz) .

ReplacingA(f1) andA(f) by their Fourier expansions we see that the expectation of this with respect
to f; and f, equalsA?, where
o=ampB) -
Now let us turn to analyzing the rest &.21). First note that
d

d
ﬂ(A( FA(f2) ABi(g) = (A(f1)A(f2) /\IE!BI (@) -

We have(xA\y) = ”%V’Xy and we are now ready to consider the expectation 6vand f; andg. We
have expressions of the form

d d
(A(fi)A(fé))aDxﬁl(fiféAgf)(uBmgf))b ) (3.22)
fora,b e {0,1}. Now, view
d
Clo1---d) = ([ B (g)°

as a Boolean function with Fourier coefﬁciel(f‘lﬁ_,,2 ..... 1w and thus 8.22 equals

. d
(ACFDA(T2))*Crr . ﬂ x5 (f1f2 A0y (9) - (3.23)
T )=

Leta’ = Ul 7(B). For afixed choice of; f; = f’ we get a nonzero expected value otgi?_, iff
% =B Na~L(f"~1(-1)) forall I, giving a unique non-zero term. Definin»ﬁ’f to be this value we get

Ey < (3.24)

,15,01,95,--0y

d d
(ACFDA( fé))aD xp (fif2A gf)(ﬂ By (gl’))b]

< 27ldlz (3.25)

Efi,fé |:Cyf.f”y§.f’7"“y§f’:|
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where the last inequality follows from the Cauchy-Schwarz inequality using a similar calculation to that
in (3.5). This means that in the case wheis even we get the upper estimate

d
B? 5 271%1/2 (3.26)
erma(B)=0/=1

for |Toq| while in the case whed is odd we get

d
A2 52 —la'|/2
> A HBI.ﬁlZ iz (3.27)

where in both cases we hawé= U 7(B).
St[ategies for the provers can now be defined as foll&®vsipon receivingV, picks 8 with proba-
bility B% and returns a randome f. P, upon receivindJ picksd — 1 random\, | = 2...d and picks

Bz, ... Ba with probability [1%., éﬁﬁl and computest” = @ ,m(B). If d is evenP, returns a random

x e . If dis oddP, also pickso with probability A2 and returns a random elementdri & ct. Note
that by folding, in both cases the defined set is of odd cardinality and hence is not empty.
The probability of success is, in the case of edeat least

d
> ﬂéﬁﬁ.(Z\BII)‘l (3.28)
Py m(f)=01=

and in the case of oddlit as at least

@.nz B) |—!|3| B \BI . (3.29)

Using 3.7) these probabilities can be related to expressi@mdg and @.27) in a way similar to the
basic proof case. We omit the details. The result is that the verifier ifudR¥cepts with probability
|T2q|°V) and the theorem follows. O

3.2.3 Adaptive tests

In this section we prov&heorem 1.4y defining a suitable adaptive test. The theorem then follows from
analyzing the completeness, which is donkémma 3.6and the soundness which is done.amma 3.7
Guruswami et al. 7] give an adaptive test reading three bits that has perfect completeness and soundness
%Jr ¢ for anye > 0. The non-adaptive version of this test has the same parameters except that it reads
4 bits. The natural iterated test based on this test reladsk2 bits in the adaptive setting ané 2 2k?
bits in the non-adaptive setting. It has perfect completeness and it turns out that soundness is essentially
2-¥ also for this test.

Thus its parameters, when adaptive, are the same as those of the test of Samorodnitsky and Trevisan
while achieving perfect completeness. As sketchedijnthis test can be designed and analyzed with
the same basic two-prover protocol as the previous tests but the construction turns out to be technically
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simpler if we modify the two-prover protocol. We do this to obtain the property called “smoothness”
in [10]. We need that for two different answers By, with high probability the answers B causing

acceptance are also different. This is achieved by sending a large number of identical clauses to both
provers.

u-parallel two-prover protocol with redundancy factor T, 2PPe(,T)

1. V choosesT u clauseqCy )Y uniformly at random. Then he randomly selestslauseqC;, )" ;
out of theseT u clauses and randomly selects a variaglérom each clauseS;;,. He sendgki)";

to proverPy; and to proveiP, he sends tha chosen variable§;, )i ; together with thgT — 1)u
clauses not selected.

2. V receives values for the chosen variablegx;;)i' ; from P, as well as 8T — 1)u values for the
variables in the clauses senfRo V also receivesBuvalues fronP; to the variables in the clauses
sent toP;. V accepts if no two values are inconsistent and all the picked clauses are satisfied.

We again call the sets of variables sent to the two praveasdW, respectively. Note that this time
U is of sizeu(3T —2) andW is of size &IT while as before we havd C W. Note also that for each
fixed set of(T — 1)u clauses sent to both players, we have an instance of thei2PFhis implies that
the soundness of 2PReT) is at most that of 2Pf) and in particular it is upper bounded Hy.

We now describe the PCP. It depends on the paramet@ngl T but has also additional parameters
k ande. For notational convenience we suppress the former.

k-iterated non-adaptive PCP of biase
1. V choosedJ as in 2PP@u,T).

2. V chooses independenlkysets(V\/j)'j(:l, that can appear wittl in 2PP¢u, T). EachW, is chosen
with the distribution induced by 2PReT), i. e., the distribution of the paly, W, is the same as
the distribution oJ,W in 2PPéu, T).

3. V choose functions( f;)X_; onU uniformly at random and reads the big ;).

4. For eachj, 1 < j <k, V chooses a functiog; on W; uniformly at random and reads the bits

Bw, (9j)-

5. For each paif, j define a functiorhij by setting, independently, for eagre {—1,1}, hij(y) =
—1 with probability 1— e and otherwisdy; (y) = 1.

6. For each pair, j, if A(fi) =1,V checks thaB;(g;(fi Ahij)) = Bj(gj) and otherwis&/ checks
thatB;(g;(—fi Ahij)) = Bj(gj)-

7. V accepts if all tests accept.

Completeness is straightforward.

Lemma 3.6. The adaptive k-iterated test with bias accepts with probability 1, i.e, it has perfect
completeness.
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Proof. Fix ani and aj. Suppose that we have a correct proof of a correct statement based on the global
assignment. If A(fj) = 1 thenfij(zY(2)) = 1 and we have

Bj(gj(fiAhy)) =gj(x"(2)(fi(z" (2)) Ahij (2" (2))) = gi(z" (2)) = Bj(g;) -
The casé\(fj) = —1 is similar. O
We next turn to soundness.

Lemma 3.7. Suppose that T £~° and we are given a proof that makes the verifier in the adaptive
iterated test with parametegs accept with probabilityZ*k2 + 26 where$ > 6e. Then we can find
strategies for Pand B in 2PPgu, T) that makes the verifier of that protocol accept with probability
at leaste?(5 — 6¢)?/2.

Proof. The proof follows along the same lines as the result for the protocolkwiti given in [7] which
in turn is based on the proof that 3SAT is inapproximable for satisfiable instanck4.in [
Let

= %((1+A(fi))Bj (97)Bj(gj(fiAhij)) + (1—A(fi))Bj(g))Bj(gj(—fiAhij)))

which is 1 if the test given byi, j) accepts and-1 otherwise. We have an expansion ligel® and by
the assumption of the lemma implies that we have a noneBpixch that

Acc(i, j)

E

Acc(i,j)] >26 . (3.30)
(i,j)€s

As all coordinates are symmetric we may assume thdt) € S Now fix the values ofy; and f; for
i,j > 2 andh; for (i, j) # (1,1) to any constants without decreasing the expected value obtaining

EU=W17f17917h11 [ACC(l, 1)A(1)<f1>B(1)(gl)} > 26 (3-31)

for some Boolean functiona™ andB(. Using the expression for A¢t, 1) we get an expression of
the form

A'(f1)B(g1(f1Ah11))C(gn) (3.32)
or
A'(f1)B(g1(—f1Ah11))C(a1) (3.33)

whose expectation over the choicelbf f1, Wi, g; andhy; is at leasts. HereA', B andC are Boolean
functions whereB is the originalB; andA'’ is a function only depending dd. Sincef is chosen with
the same distribution as f we might as well study3.32 and let us drop the subscripts for readability.
Replacing each function by its Fourier expansion, we get that the expectati®3dféquals

Euwran| 5 AuBsCrra(fxs(a(f AM)x/(9)| (3.34)
o,y
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Taking expectation oveg we see that terms witB # y have expectation 0 and thuz.84) equals

Euw

zAixéﬁéﬁEf,h [%a(f)lﬁ((fAh))]] : (3.35)
a.p

If o Z m(P) the expectation ovef yields 0 and thus we need to study

Etnlxa(f)xs(fAD)] (3.36)

wherea C n(f). Using the definition of the characte& 36) equals

Ef,h[n(wx) M <f<x>Ah<y>>) M ( M <f<x>Ah<y>>)] (3.37)
XeQ yeBNa—1(x) xen(p)\a \yeBnrz—1(x)

and as the differentbehave independently we can analyze each factor independently. Wé(kavel
with probability 1/2 and in this case

(fF)Ah(y) =1,

yeBNr—1(x)

while while if f(x) = —1, it has expectation ovérthat equalg2e — 1)> wheres, = |[z~1(x) N 3. We
conclude that the expectation &.87) equals
(Ga-@e-1%) [] (G+e-1%)
2 rl 2 ’

xeonm(pB) xen(p)\a

and defining this expression to péa, 8), we conclude that3.35 equals

Euw| S AuBgCsp(a,B)| - (3.38)
B.aCn(B)

By assumption this expectation is at ledsind we need to design strategiesPpandP,.

The strategies of the two provers are the standard strategies?iohooses am with probability
A’O% and returns a randome «. Similarly P, chooses a randotfi with probability BI% and returns a
randomy € $. Again A’ cannot be assumed to be folded as it is a derived table.idfthe empty set
we do not care wha®, does and we assume in the analysis that the verifier rejects. TheBtatnethe
other hand, is the original table and herzés nonempty and any € 8 satisfies the selected clauses.
We conclude that the strategy of the provers is successful with probability at least

EUW[ S A@féﬁﬁlll- (3.39)
B,0#aCxr(B)

We need to prove that this is large based 83 being at leasb.
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First note that

BsCs| < B2 " =2 1/2<1 4
%! pCpl < %ﬁ %Cﬁ <1, (3.40)

and the quantity that multiplieléﬁéﬁ in (3.38 satisfies

1/2 1/2
’ ( s A) ( S P >)
acn(B) acn(B)

1/2
<< )3 p2<a,ﬁ>) < (1-g)lFPlz (3.41)
acn(B)

A, p(a,B)

acn(B)

To see the last inequality ir8(41) note that the sum equals

Xeuﬁ) <<;(1— (26— 1)5‘)>2+ <;(1+ (26 — 1)5*)>2> : (3.42)

The factor corresponding tan (3.42) is of the forma? -+ b? where|a| + |b| = 1 and max|al, |b|) < 1—e¢,
and hence it is bounded l§§ — €) and this gives the bound.
Our redesigned two-prover protocol enables us to control the size of projections nicely.

Lemma 3.8. For any fixed W ang we have

2
Pi[lx(B)] < |Bl] < -

Proof. For the event in3.43 to happen there must be two different element$ dhat project to the
same element. There are at mg81?/2 pairs and the probability that any pair project to the same
element is at most/T. This follows since two different elements differ in at least one coordinate and
the probability that a given coordinate does not appeaJ iis bounded above by/T. The lemma
follows from the union bound. O

(3.43)

Let us return to .39 and consider the terms corresponding to a fiedf |3| > 2¢~2 then using
Lemma 3.8 we see, a§ > £°, that except with probability 2we have|n(B)| > 2e~2 in which case
(3.41) is bounded by

(1—8)8_2 <& <eg.

We conclude that

EU’W[ Z A;éﬁéﬁp(a,ﬁ)]gEU,W[ S BgCp(Priln(B)| <2 Y +e)| <3e.(3.44)
|Bl=2¢ Zacx(B) B >2e2
It follows that
EU,W[ > Aaéﬁéﬁpw,ﬁ)]za—%, (3.45)
|Bl<2e Zacw(B)
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and we want to bound the contribution fram= 0. Note that if| 3| < 2¢ 2 then, byLemma 3.8 except
with probability Z eachs, is one. In this case
p@.8) =Pl <e¢

and we conclude that the total expectation of terms contaimiagd is at most 3 and hence we have

Euw [ A, BgCs p(a,ﬁ)] >8—6¢ . (3.46)

Bl<2e~2,0#aCn(B)

Returning to 8.39 we see that the provers are successful with with probability at least

g A'2R2
?EU,W z Ao( Bﬁ
BotaCn(B)|Bl<2e2

Now by the above reasoning we have the following chain of equalities, where all sums are over the set

{B.0#£aCn(B).|Bl<2e7?} :

(5-60) < (Euw [3 AuBpCspl(a.B)])* < Euw [(3 AuBsCyp(e,B))’] <
fow[(3A78) (3G )] < B |3 ALE)
where the last inequality follows from

S5 CGriap)<yCi<1,
B acp B

where we again used the last inequality®#(). We conclude that the verifier in the two-prover protocol
accepts with the given strategies with probability at ledés — 6¢)2/2 and the proof is complete. [J

IN

AN

4 The case of larger domains

In this section we prov&heorem 1.5 This is done by a natural extension of the protocols from the
previous sections. Before we present our protocols we give some definitions and recall some background
results.

4.1 Background in the large domain case

Let Z,, denote the multiplicative group given by tip' roots of unity. Let{ = ¢?/P be the basig'"
root of unity. To generalize the Booleanwe define an operation mqlt ) as:

mult(¢', 1) = ¢ .

We have the following useful lemma
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Lemma4.1. If x and y are " roots of unity, we have
1P-1p1

mult(x,y) = %%xylg L

Proof. Suppose/ = £'o. Fix i and consider the inner sum. Fo# i the value is 0 while for = ig it is
p. This implies that the total sum equals which is in fact multx,y). O

We define longp codes as the natural extension of the long code. Positions are indexed by functions
f:{—1,1}' — Z, and in the code fox this position takes valué(x).

Let A be a table containing a valwg f) € Z, for every functionf : {—1,1}' — Z,. We make the
following definitions for such a table.

Definition 4.2. A tableA is folded over true iA({2f) = {2A(f), for0<a< p—1 and allf.
Definition 4.3. A table A respects exponentiationA{ f2) = A(f)2for0<a< p—1and allf.

Definition 4.4. A tableA is conditioned upon a functiam: {—1,1}' — {1,{} (1 represents false arid
represents true), &(f) = A(mult(f,h)) for all f.

Now we briefly explain Fourier analysis of lorgcodes. For every functioa : {—1,1}' — GF(p),
whereGF(p) is represented b{0,1,... p— 1}, there is a characteg, defined as

Xa(f)= [T 0.
xe{-1,1}

Note thato is a “function” rather than a “set” as in binary case and that the transform takes complex
values. We denote by (a) the set on whiclw takes nonzero valuesii. e.,

N(a) = {x|(x) # 0} .

Every tableA can be written as\(f) = S, Aqxa(f) with 5, |Ay|> = 1. We can assume that tables are
folded or conditioned upon a given function by using appropriate access mechanisms. Following are
easy consequences of folding and conditioning.

Lemma 4.5. If A is folded over true andy, +# 0, theny 11y @(x) =1 modp. In particular N(a)
iS a nonempty set.

Lemma 4.6. If A is conditioned upon a function :h{—1,1}t — {1,¢} and A, # 0, then for every
x € N(a), h(x) is true, i.e., ix) = §.

In this section our numbers are elements of the number @¢lf), the rational numbers with the
p" root of unity added. We use the homomorphisg 0 < a < p— 1 which has the property that
0a(&") = ¢, Forx a pt" root of unity we haves,(x) = x2 but this is not true in general.

We have the following straightforward lemma of which we omit the proof.
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Lemma 4.7. For x# 1 a p" root of unity we have

p—1
zoca(x) =0.

mp(B)(X) = B(y) mod p
" yefrzl(X)

Finally define

as the generalization af. Lemma 2.8eneralizes.

Lemma4.8. Letf C {-1,1}W, U CW and f: {-1,1}Y — Z,. Then
18 (F) = X3y (F) -

4.2 The basic test

We first define the basic test which is completely analogous to the binary case. We assume that tables
A B are folded over true and respect exponentiation. The tBhjeupposed longp-code onW) is
conditioned upon the CNF formultgy,.

Basic modp PCP
1. V choosedJ, W and gy as in 2PRu).
2. V chooses two function§ and f’ onU, taking values irZ, uniformly at random.

3. V chooses two random functiogsindg’ onW taking values irZ,, uniformly at randomV defines
a third functionh by setting for eacly € {—1,1}W, h(y) = g(y) f (z(y)) mult(g(y), f'(z(y))).

4. V accepts ifB(h) = B(g)A(f) mult(B(d'),A(f")).
Obviously the completeness of the basic test is 1 and we turn to the soundness.

Lemma 4.9. If the verifier in the basic test accepts with probability+ §) / p then there exists a strategy
for PL and B in 2PP(u) that makes the verifier accept with probability % 5O,

First note that
B(h)*B(g)A(f) mult(B(g),A(f"))

is ap' root of unity which is 1 iff the test accepts.
This implies, under the hypothesis of the lemma and ussmgma 4.7 that

p—1
Eu,w,f,ff,g.,gf[Zloa(B(h)’lB(g)A(f ) mult(B(g'),A(f")))] =6 .

UsingLemma 4.1and the fact that our tables respect exponentiation we see that

p—1p-1p-1

—a a a /ab racy #—bcy _
Eu,w?f,f,g,g[b;C;a;B(h) B(g®)A(fH)B(g)A(T) L™ =ps .
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We conclude that there must be some valuéagib, c) such that
|Euwt.v.g¢[B(h)B(GMA(f)B(g™), A(F*)]| > p~25 . (4.1)

Replacing(h,g, f,g/, f') by (h?,g?, f2, g, f/) preserves probability and hence changing the valug of
we can without loss of generality assume that 1.
Fix U,W, f" andg’ and let us study

Erg[B(h)B(Q)A(T)] - (4.2)
Replacing each function by its Fourier expansion we see that this equals

Bp,Bp, AuEr glxs, (g mult(f',g') ™) x,(9) 1 ()] -

B1.B2,cx

The inner expected value is 0 unlgdis= 8, andrp(B1) = a and hence4.2) equals

ZB[%Aﬂp(ﬁ)Xﬁ(mUIt(flvg/)_l) . (43)
B

Returning to 4.1) we need to analyze

Ep g [xp(mult(f',g')~)B(g®)A(f")] . (4.4)

Fix the value off’. Whenb = 0, averaging oveg' gives 0 unless’(n(z)) = 1 for allze N(8). The
probability of picking such arf’ is p~*(N(B))I. Now consider the case whén4 0. Define’ as follows:
for everyy, B’ (y) = b~te(y)B(y) wheref’(z(y)) = £®¥). Averaging @.4) overd yields BB/A(f’C).

We note thatf’s which are different o (N(B)) give differentB’. LetAg be the set of all possible
B’. We havelAs| = pl™N(F))l and over all the choices df, everyB’ € A occurs equally often. Using
this observation and applying the Cauchy-Schwarz inequality gives

|Ev[BpA(fO)| < EpBpl] = p "N S 1By| <

1/2
p”(N(ﬁ))/2< Z éﬁ/z) < p I=NBI/Z
ﬁ/eAﬁ

This implies that we get an overall upper bound on the expectatioh Hfgs

Euw [Z ||-5’ﬁ’2 ‘Anp(ﬁ)‘ pﬂ(N(ﬁ))/2]
B

Now we can extract prover strategies in a similar way as in the prodeofma 3.2 making use of
(3.7. A mirlor difference is that now ( 8 ) are functions and not sets. The provers pick 8 ) with
probability A2 ( B/23 ) and pick a randomt € N(«) (a randony € N() ).
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4.2.1 lterated tests

The basic test in the previous section can be iterated in a way similar Settieon3.2 We have only
attempted the simpler analysis of almost disjoint sets and this is what we present here.

4.2.2 The almost disjoint sets test

We first define the test which is an iteration of the basic test studied in the last section.

k-iterated mod-p almost disjoint sets PCP

1. V choosedJ as in 2PRu).

2. V chooses independentlysets(W)K_,, that can appear witd in 2PRu). EachW is chosen
with the distribution induced by 2RB), i. e., the distribution of the pald,W is the same as the
distribution ofU,W in 2PRu).

3. V chooses Rfunctions( fi)k_; and(fj’)'j‘:1 onU taking values irZy uniformly at random.

4. For eachl, 1 <| <k, V chooses two functiong andg; onW taking values irZ, uniformly at
random.

5. For each triplg, j,| such that + j +1 = 0 modk define a functiorh; by setting for eacly €
{=L.1, hij (y) = o (y) fi(z(y)) mult(g] (y), f{ (z(y))).

6. V accepts iffBy (hiji ) = Bw (91)Au (fi) mult(Bw (9)), Au (f{)) for all i+ j +1 = 0 modk.
We have the following theorem.

Theorem 4.10. The almost disjoint sets test ), has completenessand soundness s’ + p°Mdg,
where d is the constant fronTheorem 2.1

Proof. The completeness is obvious and we need to analyze the soundness. To this end let
ACC(i7 j, |) = B| (hijl )7lB| <g|)A( f,) muIt(A(fj’), B| (gf)) ,

which is 1 if the test associated with j,1) accepts and otherwise it is a differepif root of unity.

Let Zy be the set of all triplesi, j,I) with i+ j+1 =0( mod K and letSe GF(p)k2 be a vector
whose coordinates are indexed by the tripleEgnWe have

SaolAccli i) _ i T (Accli, i) .

(i.j) €20 P ScGF(p)@ (i.1)€Zo

By Lemma 4.7his expression equals 1 if the test accepts and is 0 otherwise and thus its expected value
is the probability that the test accepts. The term \8ith0 is 1 and to establish the theorem it is sufficient

to establish that any term with O is upper bounded above W(Dd?(“). Let Ts be the expected value
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of the term corresponding t& We go on to establish a strategy fgrandP, which makes the verifier
in 2PRu) accept with probabilityp~ ()| Ts|O),

Suppose without loss of generality tr&k, k,k) =r # 0 and fix the values of;, i #k, f;, j #kand
(W, 0,9 for | #kin such a way as not to decreg3g/. Since we only have one remaining function of
each type let us for readability discard the index.

By Lemma 4.1and from the fact that any other triple intersects with the given triple in at most one
place we conclude thak, after the above fixings, can be written as the surp’aerms of the form

B(h)"A()A"(f")C(a.9) , (4.5)

each with a coefficient of complex absolute valyglHereA', A”, B, andC takes values which ang"
roots of unity. We conclude that there is such an expression of the tbBnvwhose expectation over
U,W,h, f ' g, andd is at leastTg|/p.

HereA' andA” are functions that only depend thand hence might be used to extract strategy for
P>. Bis the original longp-code oW =W and hence is useful for extracting strategy Ror

We now want to compute the expected value of this expression over random chofces, af and
d. Expanding all factors except'(f’) by the Fourier transform we get

S AuBRCrrElta(f)x-rp(af mult(f',g)xy(9)2y (&)A"()] . (4.6)
a.B.yy

Now taking the expected value ovémwe see that unless = rmp(B) the term is 0. Similarly we need
y=rB. Fix ' and defingd’ as follows: for every, B’(y) = re(y)B(y) wheref’(x(y)) = {&¥). With
this definition, we have

X-rp(mult(t',9')) = x_p/(d) -
Thus unlesy’ = 8/, the expectation is 0. Thud.g) equals

S Alrry ) BeCapA'(F) (4.7)
B
Note thatp’ is uniquely determined b and f’ and functionsf’ which are different orr(N()) give

different 8’s. LetA be the set of all possibl§’s. We haveAg| = pl™N#)) and over all the choices of
f’, everyB’ € Ag occurs equally often. This implies that

| Ev(Copp.imA ()] < EnllCopp.iyl] < (4.8)
p~ 1T (NB))I z Cp| < p~ IFINBII/2( z |C;3,ﬁ'|2)l/2~
BleAﬁ ﬁ,GAﬁ

Substituting this estimate int@ (/) and using the Cauchy-Schwarz inequality oflewe get the upper
estimate

1/2 1/2
<Z‘éﬁ|2‘&np(ﬁ>|zp_”(N(m)) ( > éﬁ,ﬁfz) S(Z’éﬁzlAinpm)!Zp"”(N(ﬁ)))
P 5

ﬁvB/EAﬁ

1/2

for [Ts|/p. The same strategy as defined in the basic test now makes the verifier acceptun 2P
probability p~O®|Tg|°) and the theorem follows. O
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5 Conclusions

We have established that the query efficient test of Samorodnitsky and Trevisan can be extended to
include perfect completeness in several different ways. The tests are simple and the analyses are only
moderately complicated, in particular the proofs using the approadbtpéfe fairly straightforward.

All this taken together gives us good hope that, in the not too distant future, we will see more
powerful PCPs with even more applications to inapproximability of NP-hard optimization problems.
In particular the fact that we can include perfect completeness gives hope that stronger lower bounds
for coloring of graphs of small chromatic number could be possible. Clearly, to obtain such results,
obstacles of other nature need also be overcome. We note that some progress for constant colorable
graphs has already occurred],[but getting strong results for 3-colorable graphs seems to require new
ideas.
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