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1 Introduction

1.1 The statement of the main result

A Boolean (or 2-way) branching program is a finite directed acyclic graph (which may contain parallel
edges) with a unique source node, so that each non-sink node is labeled by one of the input variables
Xo, - - s Xn—1, €ach non-sink node has outdegree two, each edge is labeled by an elefteft o that

the two outgoing edges of a non-sink node always get different labels, and each sink-node is labeled
by an element 0of0,1}. If an input is given we start from the unique source node and go along a path
according to the following rule. If we are at nodand the label o¥ is the variableg then we leave on

the unique outgoing edge whose label is the valug.oThis path will end in a sink node; the label of

the sink-node is the output of the program at the given input, the length of the path is the computational
time at the given output, the maximal length of a path in the graph that we may get from an input this
way is the length (or depth) of the branching program. The number of nodes in the graph is the size of
the branching program.

This model describes a very general way of computing where the computational time measures the
number of accesses to the individual bits of the input and the size measures the number of different
states of the machine performing the computations. We do not measure the computational time needed
to determine the next state of our machine (that is, the next node in the graph along the path). We may
also think about this model as a random access machine whose input registers contain a single input bit,
with a working memory containing lggvl bits whereM is the size of the branching program.

Our goal is to give an explicit function which cannot be computed with a Boolean branching program
in linear time if the size of the branching program #&'.2The function has to assign to ea¢®, 1}-
sequence of length a single{0,1}-value. We identify the set of alf0,1}-sequences of length
with the set of all subsets df0,1,...,n— 1}, that is, our functionf will assign to each subset of
{0,1,...,n—1} a{0,1}-value. For such a st let f (X) be the parity of the number of elements of the
set of all pairs(x,y) with the propertyx € X,y €Y, x <y, andx+y € X. We will say thatf (X) is the
parity of interior sumgor the setX, where the expression “interior” refers to the fact that both the terms
in the sum and the sum itself must beXn

Our main result is that the parity of interior sums for a set efements cannot be computed with a
Boolean branching program in linear time if the size of the branching prograft {se&Theorem 3.4

1.2 The history of the problem and related results
1.2.1 Boolean and R-way branching programs

One of the main goals of complexity theory is to describe explicitly given functions which cannot be
computed in certain computational models with specified amount of resources. Branching programs
form one of the most general models of computation, e.g. random access machines with femory
and running time can be described by branching programs of si?eafid time (depth). Because of

the generality and simplicity of the model and its mentioned close connection to the practical random
access models of computation, finding lower bounds for explicitly given functions in the branching pro-
gram model in general, and with the given values of parameters in particular (linear time and sublinear
memory) was always considered a question of great importance.
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A generalization of the Boolean branching programs is the computational md@evay branching
programs. Since most of the results that we use in our proofs were establishHeavégr branching
programs, we describe briefly its definition. The computation is done in the same way, along a path of a
directed graph as in the Boolean case, with the following differences. Aws&h R elements is given,
the elements df are the possible values of the input variables. Each non-sink node has outdegnde
the outgoing edges are labeled by the elemErds that theR outgoing edges have different labels.
Each sink node is labeled by an element oif an input is given, that is, we assign an element &b
each of the input variables, .. ., x,, then we follow a path of the graph in the following way. We start
at the unique source node. If we are at nedend the label of node is the variablex; then we leavey
on the unigue outgoing edge whose label is the elemehtasfsigned to the variable. This path will
end in a sink node. The element [bfwhich is the label of this sink node is the output of Revay
branching program. The value B in the results most interesting for us,ni$wherec is a constant.
(This corresponds to the random access machines where each register canctogyaibits.)

1.2.2 Branching programs with many output bits, and the time segmentation method

The computational model &-way branching programs was introduced by Borodin and C8hkyho

proved a time-space trade-off for sortingntegers. This work also introduced a method for proving
lower bounds abouR-way branching programs in the special case where the number of output bits is
relatively large compared to the time allowed for the computation. Several other lower bounds and time-
space trade-offs of similar nature were given, see e. g. Abrahartisghh Beame p], Karchmer [L1],

Reisch and Schnitgeflf], and Yeshal4]. These lower bound proofs have a common high-level struc-
ture, namely the time is cut into short intervals and we use the fact that during such an interval any
information that we can use about the past must be contained in the limited memory at the beginning
of the interval. In particular if many output bits are provided in a single time interval, then these may
depend only on those input values which are accessed during this time interval and the the content of the
memory at the the beginning of the interval.

1.2.3 Lower bounds for explicit functions and decision problems

Using the same high level proof structure, and other new ideas, Beame, Saks and J&}igawe

a lower bound on the computational time for an explicitly given function with a Boolean branching
program of size 2". Namely they proved that there is an> 0 so that the question whether the
quadratic formo Qo is zero, (wheres is the input, a{0,1}-vector of lengthn, andQ is then x n
Sylvester matrix over the field with three elements) cannot be decided with a branching program of
length (14 €)n and of size 9. (The proof shows that the theorem holds for .0178.) This is the

best previously known lower bound in the direction of our main result. In the same paper they gave a
nonlinear lower bound on the length of &way branching program computing an explicitly defined
function, (similar to the function they used in the Boolean case.) More precisely they prove that for
all k there is arry so that for all sufficiently large there is an (explicitly given) 0-1 valued function
g(x1,...,X,) of n variables such that: (a) each variable is takes its values from a set of sine (b)

there is nag-way and sizen® branching program which computgé«, . . ., Xy) in depthkn.

1T.s. Jayram, formerly Jayram S. Thathachar
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The author of the present paper provdfithat the element distinctness problem (where each “ele-
ment” is the value of a variable) cannot be decided witiRamay branching program, fdR = clog,n,
in length linear inn if the size of the program is at most™2 provided that > 2. (If the problem is to
find two elements whose Hamming distance is smaller ﬁtﬂogzn then for a similar lower bound on
the length the necessary restriction on the size is offf2".) These proofs are based on the analysis
of certain combinatorial properties of the input, which are very similar to the combinatorial properties
used in p]. The high level structure of the proof still follows the time segmentation idea described
earlier. Since the present proof uses some of the technical lemmath ofe] will give later a more
detailed description of its techniques. At this point we sketch only some of the basic ideas of the proof
in [4]. Since these are also related to the proof methods§]pthis will show the additional ideas that
are needed to make the time segmentation method work when the number of output bits is small.

1.2.4 Lower bounds for binary functions and relations

It is shown in @] that if a functionf can be computed in linear time with the given restrictions on the
size then there are two large disjoint subs®is,Ws, of the set of the input variables and an input
with the following properties. For eadh= 1,2 we may change the inpgtin many different ways by
changing the values of the variabledfhonly, so that the output does not change. Moreovelt, fot, 2

we can select a large set of chan@feso that even if we perform a change frofn(on the values of
the variables iW;) and another one frond, (on the values of the variables W) simultaneously, the
output remains unchanged.

In the case of the element distinctness problem we are able to chose an inpith meets these
requirements with the additional property thawhich is a list ofn integers) consists of pairwise distinct
integers. Therefore, if our branching program solves the element distinctness program, its output is, say,
1. However we can prove the for a fixee: 1,2 the inputs that we get frong through the changes in
Y;, take more tharg different values on the set of variabMé. Therefore there will be an integgrso
that for bothi = 1,2, x will be a value of a variable fro/ if we perform suitable change gnfrom'Y;.
Consequently performing both suitable changes simultaneously we get an input which cohiades
and still the unchanged output is 1. This contradicts the assumption that the program solves the element
distinctness problem.

Similar ideas are used for the other relations, or functions in the mentioned lower bounds. In each
case we need a functidh(x,y) or a relationR(x,y) with two variables so that if we can separately
changex andy in many different ways then among these changes there will be two so that performing
them simultaneously we are able to change the valdg(rfy) or R(x,y). If Ris the equality predicate
then, as we have seen, this can be guaranteed if both sets of changes produce$ diffesst input
values. In the case of the Hamming distance problem described above the situation is even better since
3 can be replaced by ¢ for some small constamt > 0 (see f]). (This is the reason that the proof of
the lower bound for the Hamming distance problem is much simpler and gives a stronger result than the
proof for the element distinctness problem.)
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1.2.5 Quadratic forms and rigidity

The binary functior (x,y) can be also defined by a quadratic fochBy. Assume that, as beforeandy
independently run over large sets and now we want to guarantee thdB#s not constant. Motivated

by similar considerations, quadratic forms were studied by Borodin, Razborov, and Smol@hsky [
Jayram [L3], and Beame, Saks, and Thatach@}. [ The result in this direction that we will use in
our paper is the following. (This was proved in more general form®jn[fL3], and [6], and also
follows from the results of10].) Suppose that the rank of the matixis r andx resp. y are taking
values independently fromm resp. mp dimensional subspaces of amdimensional vectorspace. If
my +mp + 1 > 2mthen the quadratic form' By is not constant.

As we described earlier, in the lower bound proofs we can usually guarantee oryath@y can
take values independently only in some limited sense, namely we can apply independent changes to two
disjoint sets of variables. 6] the mentioned property of the quadratic forms is applied in the following
way. The lower bound is proved for a function of the foxly whereA is a suitably chosen, explicitly
given, matrix over a finite field. This matrix has the property that gtk én submatrix which does
not contain elements from the main diagonal is of rank at |6&stwhered > 0 is a small constant.
(This may be considered as a rigidity property of the maiix The input variables of the branching
program take values from the fiekl We pick two large sets of independent changes on two disjoint
sets of variables of at leadh elements. The submatrix éf formed from the corresponding rows and
columns will be the matrixB in the mentioned property of quadratic forms. This way it is possible to
guarantee that, roughly speaking, under independent changes on these sets of variables, the quadratic
form cannot remain constant, which makes the lower bound proof possible.

In the present paper we will follow the same strategy for our proof with the following improvements.
We use two-way branching programs with a single output bit which creates three new problems. (1) Itis
more difficult to prove the existence of the two disjoint sets of variables which admit many independent
changes that leave the output of the branching program unchanged. For this we use the machinery
worked out in ]. (2) The explicitly given matrix of§] is a Sylvester matrix over the field and so the
size of the field must be at least We need something similar fé%, the field with two elements. We
do not give an explicit construction for such a matrix, but a random construction which depends only
on a linear number of random bits which can be included in the input. (3) it is not enough for us if the
rank of the submatrices of sizé® x &n are §°n, we need much larger ranks; what we prove will be
5|logd|~2n.

1.2.6 Summary of the history of the problem

Summarizing the historical developments about the lower bound techniques for branching programs, we
can say that there were two parallel developments. The first is the time segmentation method which later
was supplemented by the technique of considering changes of the values of variables on two disjoint
sets: B],[6],[4]. The second is the development of the algebraic techniques about quadratic forms based
on matrices with rigidity properties, providing explicitly defined functions which were suitable for the
lower bound proof techniques mentioned in the first direction of developmé@n{sJ),[6]. The present

paper uses the techniques of both of these directions.

THEORY OF COMPUTING, Volume 1 (2005), pp. 149-176 153


http://dx.doi.org/10.4086/toc

MIKL OS AJTAI

1.3 Subsequent developments

A preliminary version of this paper was published 8 ¢ontaining all of the essential elements of the
proofs presented here. Since then, the main result of this paper was further improved by Beame, Saks,
Sun, and Vee inq] by making the time/space lower bounds sharper and generalizing the theorem for
the case of probabilistic branching programs. Their proofs use the results and techniques of the present
paper (together with methods of different nature).

2 Overview of the proof

2.1 Alower bound for a nonexplicit function

Our proof in the present paper uses a technical lemma of the element distinctness result. As we have
mentioned already in the introduction, it is shown 4 that if a functionf can be computed in linear
time with the given restrictions on the size then there are two large disjoint sidsat%, of the set of
the input variables and an inpytso that for each= 1,2 we may change the inpgtin many different
ways by changing only the values of the variable®\frso that the output does not change; moreover
these changes can be performed simultaneousWiocandW, so that the output still does not change.
The ratio between the sizes of the séfsand the logarithm of the number of changes has a crucial
importance in the proofs of the present paper. (A precise statement of this result is diveenrita 3.5
below.)

We use this result to show that a quadratic form (whichdsgiven explicitly) cannot be computed
in linear time. The algebraic part of this prodfmma 3.1} is a theorem proved by Borodin, Razborov,
and Smolenskyd] (and in more general forms by Jayra@8] and Beame, Saks, and Jayraéf) [ We
reduce the problem of giving a quadratic form with the required properties to a question about the ranks
of the submatrices (or minors) of the matrix generating the quadratic form in a similar way as is done
in [6]. In both cases the goal is to get a matfxso that eachon| by |dn| submatrix of the matridA
has rank at leasy(d)n, for eachd > 0, provided than is sufficiently large with respect t8, where
the functiony should be as large as possible. The Sylvester matrices uséfare[explicitly given
examples of such matrices witi(§) = &2, provided that we consider only submatrices that do not
contain any elements of the main diagonal. (This restriction does not affect the applicability of the
matrix to the lower bound proof.)

2.2 Decreasing the randomness needed

Definition 2.1. We will call ann x n matrixA = (& ;) aHankelmatrix if Vi, j,k,| € {0,1,...,n—1},i+
j =k+1impliesa; j = ax. In other wordsA is a Hankel matrix iff it is constant across minor diagonals.

Remark 2.2. A Hankel matrix is determined by onlyn2- 1 suitably chosen entries, e.g. by entries of

the first row and last column. If a matrix is constant along all diagonals it is callexeplitzmatrix.
Reversing the ordering of the rows creates a one-to-one correspondence between Toeplitz matrices and
Hankel matrices. Therefore all of our results concerning the ranks of Hankel matrices remain valid for
Toeplitz matrices as well.
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We show that ifA is a randonn by n Hankel matrix over the field with 2 elements, with uniform
distribution on the set of all such matrices, then with high probability the described property about the
ranks of the submatrices holds with(§) = c§|logd|~2 for an absolute constaet> 0. As a conse-
quence, using also the mentioned lemma frdiln ve are able to show that & is the matrix that we
get fromA by replacing each entry in the main diagonal and above by 0, then the quadrati@ﬁmm
wherex is the input vector, cannot be computed with a branching program of linear length and size at
most Z".

2.3 From a non-explicit function to an explicit function

Of course this is not an explicitly given function; we only know that the lower bound holds for almost all
matrices. However, we got the matrix by randomizing omy-2 bits. Therefore if we include these bits

in the input, then we get an explicitly given problem (with-31 input variables, where the described
tradeoff holds between the length and size of any branching program computing the quadratic form).
In other words, ifA(y), y = (Yo, ..,Y2n_2) denotes the Hankel matrix with j = yij, then (A(y)x,x)

cannot be computed in the given length and size from the i(put.

2.4 Obtaining a lower bound for the parity of interior sums problem

Assume now thad = (a; ;) is a fixed Hankel matrix so thghx x) cannot be computed with a branching
program with the given restrictions. Suppose that (Xo,...,X,—1) andX = {i | x; = 1}, and

D={i+jla =1ij€{0,..,n—1}} .

It is easy to see thaix, x) is the parity of the number of all paik$, j), i € X, j € X with the property
i < jandi+jeD.

This will already imply that if two subsetX, Y, of the set{1,2,...,2n} are given, then the problem
of computing the parity of the number of elements of the set of all gaij$ with the propertyi € X,
j €X,i<j,i+]jeY cannot be solved by a branching program of linear length and of size at most
2", (The setD defined above will play the role of.) It will not be difficult to make a single set from
the two set,Y, by taking into account the sizes of their elements, and so we will get that the task of
computing, given as input ad C {1,2...,n}, the parity of the number of elements of the set of all pairs
(i, ) with the propertyi € X, j € X, i < ], i+ j € X cannot be accomplished by a branching program of
linear length and of size at most™

Finally we note that our results about random Hankel matrices remain true over any field with ap-
propriate modifications. (See the remarks aftemma 4.5 Lemma 4.7andLemma 4.9 See also the
comment about the applicability of these modified versions to generalizatiofiseafrem 3.4n the
proof of Lemma 3.11)
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3 The reduction of the lower bound to a problem about Hankel matrices

3.1 The statement ofTheorem 3.4

In this section we reduce the problem of giving a lower bound for the time needed to solve the problem
described in the introduction to the existence of a marixhich can be constructed frombits with
the property that each large submatrixfofias also relatively large rank.

Definition 3.1. If X,Y are sets then Fu¥,Y) will denote the set of all functions, defined ¥ntaking
values inY.

A branching program as we will define below will be what is usually called a (deterministic) Boolean
or 2-way branching program indicating that the input variables take their values from a set of size 2.

Definition 3.2. A branching prograniB with n input variables, .. .,X,_1 is a five tuple
(G,start,sink,var,val) ,
with the following properties

(). § is a finite directed acyclic graph, which may contain parallel edges
(b). start is the unique source node §f

(c). var is a function defined on the non-sink nodes%fvith values in the se{xo,...,xn—1} Of
variables,

(d). out is a function defined on the set of sink node$afith values in{0, 1},
(e). valis a function defined on the set of edges with valuef0iri },

(f). each non-sink node has out-degree 2, and the funetidntakes different values on the two
outgoing edges.

An input for the branching prograf is a{0, 1}-assignment of the variables (Instead of such an
assignment we usually will think about an input aal } -valued functiom defined on{0,1,...,n—1}
wheren (i) is the value of;.) If an input is given, then starting froetart we go along a path in the
graph in the following way. When we are at a non-sink nedeen we look at the value of the variable
var(Vv) and leave the node along the edgehere the value ofal(e) is the same as the value of this
variable. Since the graph is acyclic and finite, this way we will reach a sink-wodet (w) will be the
output of the branching program at the given input. The number of edges along the path determined this
way by the input is the computational time of the branching program at the given input. The maximal
computational time for the set of all inputs (that is, the maximal length of all paths arising from an input
in the given way) is théengthof the branching program. Thsizeof the branching program is the
number of nodes of.

Definition 3.3. Assume thak is a subset of0,...,n—1}. N, (X) will denote the number of all pairs
X,y € X, X< ysothatx+y € X.
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The following theorem is the main result of the present paper. It states that the parity of the interior
sums of a subset of,@,...,n— 1 cannot be determined by a branching program of sf2arRlinear
time.

Theorem 3.4. For all positive integers k, i€ > 0 is sufficiently small and n is sufficiently large then
there is no branching prograr® with n inputs, of length at most kn and of size at n&58t which for
all inputsn computes the parity of NX;) where X; = {i € {0,1,...,n—1} | n(i) = 1}}

3.2 Results from earlier works

In the proof we will use the following lemmaemma 3.5which is a consequence bémma Alproved
in [4] (called Lemma 9 in that paper). The proofldfmma 3.5from Lemma Alis almost identical to
the proof of Theorem 4 from Lemma 9 id][and does not require any new ideas. We describe this proof
(of Lemma 3.5rom Lemma AJ) in the last section.

The remaining part of the paper, starting witbmma 3.7 is self-contained. We begin with the
definitions needed to understand the statemebeofma 3.5

Definitions.

1. Aninput(of a branching problem withinput variables) is a functiop defined on{0,1,...,n—1}
with values in{0,1}. A partial inputis a functionn defined on a subset ¢D,1,...,n— 1} with
values in{0,1}.

2. Assume thaty is an input andy is a partial input. Thery ! will denote the input which is
identical ton ondomain(n) and identical tgy ondomain(y)\domain(n).

3. If § € {0,1} andB is a branching program, thédi-1(§) will denote the set of all inputg so that
the output ofB at inputn is .

Lemma 3.5. For all positive integers k, ilo; > 0 is sufficiently small with respect to ks, > O is
sufficiently small with respect o, € > 0 is sufficiently small with respect sy, n is sufficiently large
with respect tce, B is a branching program with n inputs of length at most kn and of size at &ibst
and § € {0,1} so that|B—1(§)| > 2"1, then there exist & € B~1(5), A € (02,01), U € (02,01),
W C{0,1,...,n—1},i=1,2, and sets of partial inputs ¥ = 1,2 defined on \\satisfying the following
conditions:

(). foralli e W andj € W, we have < j,
(2). [Wi| = M| = un,
(3). [Yal,[Yz| > 24021,
(4). ut+wx > 22, and

(5). for all N1 € Y1, N2 € Yo, we have(y 1m1) 12 € B7L(5).
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3.3 Branching programs and matrix rigidity

Definition 3.6. Assume tha#f\ is ann by n matrix over the field= andf is a real-valued function defined
on (0,1]. We say that the matriAis f-rigid if for eachq=1,...,n and for eachy by q submatrixB of
Awe have that the rank @ is at leastf ()n.

The proof ofTheorem 3.4s based olhemma 3.7andLemma 3.9described below.

Lemma 3.7. There is a5 > 0 so that, for ally > 0, if the function ¢x) is defined by (x) = §x|logx| 2
if X € (7, %) and gx) = 0 otherwise, then for each sufficiently large positive integer n there is an n by n
Hankel matrix A over §; so that A is g-rigid.

Remark 3.8. It would be much easier to prove the lemma wgilx) = §2x, though this is not enough
for the present application.

We will prove Lemma 3.7in the next section; more precisely, we will proveheorem 4.2that a
random matridA taken with uniform distribution on the set of all Hankel matrices meets the requirements
of the Lemma with high probability.

Definitions.

1. Assume that is a function with values if0,1} defined on{0,1,...,n—1}. u, will denote the
n-dimensional vectofn (0),...,n(n—1))

2. The inner product of thae-dimensional vectora, v will be denoted byu- v.

3. Assume that\ = {aj j}['5;_o is ann by n matrix. A will denote then by n matrix that we get
from A by keeping every entry ok below the main diagonal and replacing all other entries by 0.
In other wordsA = {bi7j}{1;&j:0, whereb; j =g j foralli > jandbjj=0foralli <j,i=1,...,n,
j=1,...,n.

Lemma 3.9. For all positive integers k, ito; > 0 is sufficiently small with respect to ks, > 0 is
sufficiently small with respect oy, € > 0 is sufficiently small with respect o, and n is sufficiently
large with respect tee, then the following holds. Assume that the function f is define@alj by
f(x) = XLt o if X € (o1,02) and f(x) = 0 otherwise. If A is an f-rigid n by n matrix A ovep fhen
there is no branching program with n inputs of length at most kn and of size at n&58twhich, for all
inputsn, computediuy, - u,.

Remark 3.10. We use the matriX instead ofA in the expressioru, - u, at the conclusion of the
lemma, since over a field of characteristic 2 and for a symmetric matradmost all of the terms of
Auy - u, will have 0 coefficients.

Proof ofLemma 3.9 Assume that, contrary to our statement, there is a branching pragrath the
given properties which comput&ur, -Uy. We applyLemma 3.5with the given values ok, 01.02,€,n
and with the giverB. According toLemma 3.5there exists € {0,1}, x € B~(8), A,u € (02,01),
andW,Y;, i = 1,2 with the properties listed ihemma 3.5 Letv = (vp,...,Vh—1) be ann dimensional
vector overF, defined in the following way. For all¢ Wy UW, let v; = x (i) and for alli € Wy UW,
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letv; = 0. Recall that foii = 1,2,; is a set of functions frorif to {0,1}. We define a vecton(é) =

(Wi wke) ) for all € in Yy UY,. If i € domain(€) thenw®) = £(i), if i ¢ domain(&) thenw(®) = 0.

Let g; be the following function defined ovi: for all & € Y;, gi(&) = A(v+w®)) - (v+w(®). Since the
functionsg; take at most two different values there &feC Y; so that]Y/| > %]Yi\ andg; is constant on
Y/ for i =1,2. Assume now thaf; €Y/, & €Y, and letn = (3 1&1)1&. By Lemma 3.51 € H and

therefore

AUX Uy = Aun Uy = A(V+ W(gl) +W(§2)) . (V+W(§1) —|—W(§2))
= —Av-vai(§1) +Ga(Go) + AW W + AE)

Au, -u, andAv-v do not depend on the choices&t &. By the definition ofY] andYy, g1(&1) +g2(&2)

is constant orY; x Ys. These facts imply tha&w(¢) . w(%2) + Aw(%2) .w(%) as a function ofy, &, is also
constant orY; x Y5. Condition (1)and the definition ofA implies thatAvv@2 w1 is identically 0 on
Y] x Yj; thereforeAvv@1 (€2) is constant ofY] x Yj. LetVj, be the vectorspace dfb-valued functions
defined on{0,...,n—1}, and letV;, i = 1,2, be the subspace of functions that vanish outgideThe
dimension otV is un. We may assume that, Y/ C ;. Let 1; be the natural embedding wf into Vg
and letr, be the orthogonal projection &f ontoV,. B will be the linear map 0¥/ into V, defined by
Bx= mAuix. For allé; € Vi, & € Vo we haveAws) . w(%2) = BE; - &,. If we fix the bases in both; and

V> which consist of those functions which take the value 1 at exactly one point and 0 everywhere else,
then the matrix oB is a submatrix ofA consisting of those entries whose column numbers ang iand
row numbers are ik\b. By Condition (1)this submatrix of is identical to the corresponding submatrix
of A. Therefore by thd -rigidity of A, the rank ofB is at Ieasiu”ﬁ n. We applyLemma 3.11(below)
with Vi, Vo, m— un, X — Y], Y — Y; andB. Condition (3)implies that

1
Y| > SIW| > 24 At

Therefore, according themma 3.11 the fact thatBx-y is constant orny; (Y1) x 12(Y2) implies that
2(un— An) + p oxn < 2un. This is however impossible since, Bpndition (4) ul*ox >24. O

The following lemma, in more general forms, is proved % [13], [6], and also follows from the
results of LO]. To make the paper more self contained we provide a proof.

Lemma 3.11. Assume that ¥/ V, are m-dimensional vectorspaces over the field)dxC Vi,Y C Vs,
|X| >2™, Y| > 2™ and B is a linear map of Mnto \» so that the rank of B is at least r. Ify-mp+r >
2m then the function By, xe X, ye Y is not constanton X Y.

Proof ofLemma 3.11 Let xg be an arbitrary but fixed elementXfand letX’ = {x—xg | x € X}. Clearly
IX| = |X’| and if Bx-y is constant orX x Y thenBx-y is identically 0 onX’ x Y. Therefore it is
enough to prove that the assumptions of the lemma imply Bixaty is not identically 0 onX x Y.
Assume that, contrary to our assertion, it is identically 0. Hebe the subspace Wy generated by
X and G be the subspace W generated by. We haveBH -G = 0, that is, the subspac&i and
G are orthogonal. Therefore digaH) + dim(G) < m, where dinfW) denotes the dimension of the
subspacé&V. Since the rank oB is at leastr we have that difBH) > dim(H) — (m—r). We have
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dim(H) — (m—r)+dim(G) <m. The lower bound on the sizes of the 9€t¥ imply the following lower
bound on the dimensions of the subspaces generated by theiid dirmy, dim(G) > mp. This simply
follows from the fact that a-dimensional subspace has&ements. We havey, — (m—r)+m<m,
that is,mm + mp —r < 2min contradiction to our assumption. O

Remark 3.12. The lower bounds on difi ) and din{G) remain true even if the field has characteristic
different from 2, but we assume that the elementX a@indY have only{0,1} coefficients in a suitably
chosen basis &f; andV,. See Lemma 7 ofl[3]. This is important for the generalization ®heorem 3.4
for fields with other characteristics.

3.4 The proof of the main result

Proof of Theorem 3.4 Assume that, contrary to our assertion, there is a branching praBrawith the
given parameters which computes the paritiofX). Letm= | {5 |. We applyLemma 3.9ithn—m,
k — ck, wherec is a sufficiently large absolute constant and- §. Assume thaby, o2 are picked with
the properties described in the lemma.

Let g be the function defined ihemma 3.7 Applying Lemma 3.Avith n — m, y — o> we get that
there is arm by m g-rigid matrix A = (& j) overF,. If oy is sufficiently small with respect t6, thenA
will be f-rigid as well. Therefore bzemma 3.%here is no branching program of size at mot@hich
computesug,&- ug in time cknfor all £, where{ is anF,-valued function defined 0f0,1,...,m—1}.
LetD={i+j| &;=1}and

X ={ie{0,1,....m=1}| (i) =1} .

For any pair of sets of integek§ Z let N, (X, Z) be the number of pairgy, x <y so thatx € X,y € X
andx+y € Z. The statement dfemma 3.9n our case is that the parity &f, (X;,D) cannot be decided
by a branching program with the given restrictions on its parameters. We show that this problem can be
reduced to the problem of determining the parity\of(X;, ) for a suitably chosem < Fundn,2) in a
way which can be implemented by a linear-time branching program. Therefore our indirect hypothesis
will contradict toLemma 3.9 7 is defined in the following way.

We define first two setbl;,U,. Uy = 2m+ Xg, U, =4m+D. Letn be the unigque element of
Funq{0,1,...,n—1},{0,1}) so thatX; = U;UU,. Clearly, ifx,y € X,, x <y, andx+y € D then
2m+x € Xy, 2m+y € Xy, 2m+x < 2m+y, and(2m+x) + (2m+y) € X;,. Conversely, assume that
ZWe Xy, z<wandz+w e X;. Itis easy to see that this impligsw € {2m,...,3m— 1} and therefore
z—2mw—2me Xg, Z—2m< w—2m, and(z— 2m) +w(—2m) € X,. ThereforeN, (X,D) = N, (Xy).
We claim that each value af can be computed in constant time by a branching program, and to do
this the size of our program must be increased only by a factor of two since the extra memory needed
for this step is only one bit. Indeed, assume that we want to determine the vahug)dbr some
i € {0,1,...,n—1}. First the program decides whether U; by checking whethef (i —2m) = 1. If
not, thenn (i) = 0. If {(i —2m) = 1, then it has to decide whethieg U,. SinceD is part of the input
this can be decided by checking whetherdm € D. If the anser is no then(i) = 0, if the answer is
yes thenn (i) = 1. Therefore we have reduced the problem of determining the pariy 0X;,D) to
the problem of determining the parity bf, (X, ). O
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4 Random Hankel matrices

4.1 The statement of the result

In this section we show that with a positive probability all large submatrices of a random Hankel matrix
have relatively large ranks.

Definition 4.1. The field withq elements will be denoted .

Theorem 4.2. There exists aic> 0 so that, for all @ > 0, if n is sufficiently large then the following
holds: Assume that A {& ;},i=0,...,n—1, j=0,...,n—1is arandom n by n Hankel matrix over

F,, taken with uniform distribution on the set of all such matrices. Then with a probability greater than
2, A has the following property:

(6). Suppose&S= {sp,...,5q-1}, T = {to,...,tq—1} are subsets of0,...,n— 1} with g elements, where
Con<g< 3, andBst = (asy),i=0,...,—1, j=0,...,q— 1is the submatrix oA consisting of those
entries whose row numbers are$mand column numbers are ih. Then the rank oBgr is at least
cillog(?)|4q.

4.2 Sketch of the proof
4.2.1 A natural but unsuccessful attempt

The most natural way to prove the statement of the theorem would be the following. Assume that
the setsS T are fixed. We give an upper boud on the probabilitypst of the event that, for the
randomization of\, the matrixBg defined for the fixed seBandT has rank smaller tham |log( )| 2.
If M multiplied by the number of choices for the p&8 T) is smaller than} then the assertion of the
theorem clearly holds.

Unfortunately a proof of this type cannot work. Indeed i cnthen the number of pairsS T) is
about 2501°092)n On the other hand for a fixed p&rT, in the worst case, the number of minor diagonals
of Aintersected by5x T can be as small axc@— 1. Each of the choices of Os and 1sAron these
diagonals are equally probable so the probability that we get rank smalleclthag(%)r2 is at least
2-2n+1 (1t is not O since, e.g. the 0 matrix has such a small rank.) Since the absolute value of the
exponent in the number of pairs is greater by a factdﬂaﬁ%] than in the upper bounidl, the product
cannot be smaller tha%ﬂf cis a small constant.

4.2.2 Reducing the number of relevant submatrices

The main problem with the argument described above was that the number of$aiyds too large
compared to the number of relevant minor diagonals. 8eé the set of these pairs, that is, the set of
all pairs(ST) sothatST C {0,1,...,n—1} and|S| = |T| = g. We will be able to avoid the mentioned
difficulty in the following way. Instead of working with the elementsSofve will consider a smaller set
8’ consisting of pairgS, T’) so that|S| < q, |[T’| < g and with the property that for a{S T) € § there
isa(S,T’) € 8 sothatS C SandT’ C T. (We will refer to this property by saying thét is densein

S.)
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It is enough to show that for allS, T’) € §' the rank ofBg 1 is at leastcs|log(3)|~2g. Indeed,
since8’ is dense irS, each matrixBgt with (ST) € 8 has a submatriBg 1 with (S,T’) € § and so
rank(Bst) > rank(Bs 1) > c1|log(3)|~2q

We will define the se8’ by constructlng a functio defined on8 so that for eachS,T) € §,
FUST))=(S,T")withS C S T'CT. Clearly if such arf is given and8’ = {F((ST)) | (ST) € 8},
then§' is dense ir8. We also have to make sure tHaf| is small and that we are able to give a good
upper bound, for each fixe@®, T’) € §', on the probability that the rank of the matiy 1/ is smaller
thanc, |log(3)|~2.

4.2.3 The rank of an enlarged submatrix

First we describe our method of estimating the probability that the rank of a subrBatrixf A is
small for a fixed paifS T). This will be based on the following observation. Assume that a(&iir),
ST C{0,1,...,n—1}, is fixed ands > max S= maxesX, t > max T, § = SU{s}, andT; = T U{t}.
Then with probability at leas} for the randomization oA we have that the rank ds, 1, is strictly
greater than the rank &s7. We will prove this statement in the following way. Forlak=0,1,...,n—1,
let Dy be the minor diagonal oA containing the entries; ; with i 4 j = k. We show that if the values
of the entries ofA are fixed on all minor diagonalBy with k < s+, then out of the two possible
definitions ofA on the minor diagondDs,+, at least one will yield a matriBs, 1, with the property that
rank(Bs, 1,) > rank(Bst). The proof of this fact is a simple argument in linear algebra as described in
the proof ofLemma 4.5

Lemma 4.5tself is a slight generalization of this assertion, statlng that if we add not a smgle new
element tadSand another smgle elementTg but a set of new elemen&to Sso that maxS < min S
and a set of new elemeriisto T so that maxT < min T then the resulting enlarged s&s= SU S,
T, = TUT have the following property. If the values of the entrieafre fixed on all minor diagonals
Dy with k < max S+maxT, then for the randomization & on the remaining minor diagonals we have
that, with probability at least + 2-1>+Tl, rankBs 1,) > rank(Bst). Indeed, there argS+ T| minor
diagonals which contain an entag; of A with s¢ Sandt € T. According to the already described
special case the randomization of the values of the entries on each of these diagonals will lead to the
required increase of the rank with a probability of at Ie}asﬁince these randomizations are independent

we get that the rank increases with probability at leastt ST,

4.2.4 Partitioning the rows and columns

What we have done so far is only good for estimating the probability of(Bwk, ) > rankBsT) for
some pairgS T), (S, T1) whereSC S, T C Ty. To get a lower bound on the probability of raigT) >
R for some integeR, we will partition S into subsetsS;,...,§ and T into subsetsly,..., T} so that

max § < min Sy and maxT; < min Tyq foralli=1,...,1 —1. Ifrank(Bst) < R=1—r then there
must be at leastdistinct elementsof {1,...,1} with the property rankBr, A, ) = rank(Br, , A, ), Where
N=SU...u§ andAj =Ty U...UT; for j =1,...,I. We will denote byE the set of all integers

i € {1,...,1} with this property. Then
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(7). the probability of the event that we get equalities for every element of this set is at most

o Sice(S+T])

If we add these upper bounds for all of the possible choiceE ftinat is for all subsets dfd,...,1}
with r elements, then we get an upper bound on the probability of Baik < | —r. (This upper bound
is formulated in a slightly more general form liemma 4.7) We will use this estimate for each fixed
choice for(ST) € 8’ with suitable choices of the partitio’ss, ..., S, T1,..., T}

4.2.5 The choice of the partitions and the submatrices

Our remaining task is to define the functigrso that
8" = {F((X1,X2)) | (X1, X2) € 8}

is dense inS, select a pair of partitions for eadl$ T) € 8', and then add the corresponding upper
bounds (withR = c,q|log(2)|~2) for each(S, T) € §'. The upper bounds will not depend on the choice
of (ST) e &/, so we will have to prove that the common upper bound multiplie(Bhys at most1

When we defin€F ((Xy, X2) ) for some(Xy, Xz) € 8, we will have already in mind the task of choosing
suitable partitions o8andT, where(S T) = F(X1,X2). We give here a somewhat simplified definition
of &, the final definition will be provided in the proof dlemma 4.9 Lett be a positive integer which
is a large constant. We assume now, for the sake of simplicity,t®h@at For j = 1,2 we partition
X; into subsetsKi”, K% each containing exactl elements so that maK( I < min K|(+)1 for
i=1. ’t2 — 1. Clearly these properties unlquely determine both partitions.

For each fixed = 1,...,q/t? we pick sets] () - K( ) j = 1,2, with exactlyt elements so that
|J +J \ is maximal. Since the seﬂ;‘.J havet elements this maximum is at mast We will show
(Lemma 4 Jthat, since we pick the seil§ from sets of sizé?, this upper bound can be can be attained,

and s0J® +3@| =t2foralli = 1,2,. 4. Let

q/t?

ZJ — U ‘]i(J)
i=1

for j =1,2. Now we defined” by F({X1,Xz}) = (Z1,Z5). For j = 1,2 we will use the partition
Jij),. é/iz of the seZj when estimatingrob(rankBz, z,) < c1|log(2)|~2q). The inequality ofCon-
dition (7) gives a good upper bound which can be easily evaluated (as a functiphasfdn) since in
the exponents the value of the expressic(rh], @4 (2) ) ist?, and the number of exceptional s&san

be also estimated without any problems. FlnaIIy the number of possible(@ai%) is at most(q/tz) .
These estimates lead to the conclusion of the theorem.

4.2.6 Why did it work?

From the description of the necessary estimates at the end of the last paragraph it is not clear what
made it possible to get a good enough upper bound on the probakitesrankBz, z,) < R), where
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R= c1|log()|~2q, compared to the number of paifZ:, Z,). It is true that the number of pairs became
smaller, since the sizes of the s&sare smaller by a factor dfthen the sizes of the seX§, but for
smaller sets the upper bounds on the probabilities can be larger. Why is it that we gained more on the
number of sets then lost on the upper bounds on the probabilities?

The answer is that the upper bound did not depend on the sizes of tt# batslepended only on
the common size of the se.iiél) +Ji(2> which wast?. The corresponding quantity for the p&¥;, Xo) is
\Ki(l) + Ki(z) |. Since we do not have any assumption about theKﬁ(é}sKi(z) other than that their sizes are

t2, in the worst cas@(i(l) + Ki(2)| can be as small ag2 Therefore, although the sizes of the sets went
down by a factor of, the critical quantity in the upper bounds remained essentially unchanged. This
guaranteed that we won more on decreasing the number of pairs then we lost on increasing the upper
bound of the probabilities. To formulate the same phenomenon in the language of minor diagonals we
may say that: although the ratio of the sizes of the ¥gtandZ; is t, if we consider the number of

minor diagonals intersecting the subsléi@ X Ki(z) resp.Ji(l) X Ji(z) the ratio, at least in certain cases, is
at most 2.

This completes the sketch of the proof of the theorem. In the remaining part of the section we gave
a detailed proof of the mentioned lemmata and the theorem.

4.3 The proof of Theorem 4.2

Lemma 4.3. Assume thatt is a positive integer ang\Uare sets of integers with) | = |V| =t2. Then
there are U CU, V' CV, so thatU’| = [V/| =t and|U’ +V'| =t2.

Remark 4.4. As the proof will show, the lemma remains true if we repldg¢e= |V | = t2 by the weaker
assumptionU| = [V| =t —t + 1.

Proof ofLemma 4.3 We have to select the subs&xsV’ of U andV so that each has exactlglements
and all of thet? sumsu+v, uec U’, ve V' are different. Suppose that this does not hold for some
selection oU’,V’, that isu+v = u+ v for some suitably chosamu c U’, v,v € V'. This would imply
thatu— u=v—vand so the setd)’ —U’) . and(V'—V’). are not disjoint, where for a set of integéts
(X)+ = {xe X | x> 0}. Therefore it is sufficient (and also necessary) to prove that therel&xistJ,
V' CV sothaiU'| = |V'|=tand(U' -U") . Nn(V' —=V'), =0.

LetU ={uo,...,Uh2_1},V ={Vvo,...,Vi2_1} so thatup < ... < Uz_q andvp < ... < Vp2_1. We define
the integersn,, m, by

my=min {Uj;t_1—U |i=0,1,..,t2—t} and my=min{vit1—V|i=01,,t2—t} .
Suppose that, e.gn, < m,, and lets be an integer withm, = us;t_1 — Us. We claim that the choice
U’ = {Us,Ust1,...,Ustt-1}, V' ={vjt | j =0,1,...,t — 1} meets our requirements. Indeedyif, vi: € V'
andj < kthenvit —Vijt > V(j 1t —Vjt > Vjt4t-1—Vjt > M, > my, and therefore each element(®f —V')

is strictly greater tham,. On the other hantl’ C [us, Us t—1] = [us,Us+ my]; therefore(U’ —U’)
contains only integers not greater tirap ConsequentlyU’ —U’") . N (V' —V’). = 0. O

Definitions.
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1. func(n,2) will denote the set of all functions defined ¢0, ...,n— 1} with values inF,. Similarly,
func(]l,n), 2) will denote the set of all functions defined on the intefvat) = {I,...,n— 1} with
values inF.

2. Assume thahy, n, are positive integers anfde func(n; +nz —1,2). Then diagf,ns, n2) will be
theny by np matrix (d; j),i =0,...,n1—1,j=0,1,...,mp,— 1, whered; j = f(i+j).

3. Assume thahy, ny, ki, ko, are positive integersy > ki, n > ko, f € func(ky +kz — 1,2), andg is
taken with uniform distribution from the set fufik; + ko, n1 4+ nz — 1),2). d(ng,np, f) will be a
random variable whose value is didgJg, n1, n2) (wheref Ugis the unique common extension of
f andgto [0,n1 +ny—1)). P(ng,nz) will denote the random variable whose value is drag;, n)
whereh is taken with uniform distribution from the set fuimg +n, — 1,2).

4. Supposé\= (g j),i=0,....,m—1,j=0,1,...,n,—1, isann; by np matrixandSC {0,1,...,n; —
1}, T € {0,1,...,n, — 1}. Then sulpA, S T) will denote the|S| by | T| matrix consisting of those
entries ofA which have row numbers iBand in column numbers if.

Lemma 4.5. Assume that ) np, ki, and k are positive integers, k< ni, ko < np, f is a function on
{0,1,...,ki + ko — 1} with values in g, SC {0,1,...,m —1}, T €{0,1,...,np — 1}, and

\(Sm{kl,...,nl—1})+(Tﬂ{k2,...,n2—1})\ >m .

Then with probability at least — 2™ the following holds: the rank of the matsub(®(ny,ny, f),ST)
is greater than the rank of the matrix

sub®(ng,ng, f),SN{0,1,... . k1 —1},TN{0,1,.. ko —1}) .

Remark 4.6. If we define random Hankel matrices over an arbitrary flelslo that the random entries
of the Hankel matrices are picked from a finite sutidef F with uniform distribution, then our Lemma
remains true if we substitute-1|D|~™ for the probability - 2-™. (Naturally we also have to modify
the definition ord(ny, Ny, f), since in this casé is a function whose values are in the Be}

Proof ofLemma 4.5 Let®(ny,ny, f) = (¢;),i=0,...,m—1,j=0,...,n—1. Foreack =0,1,2,...
letS =Sn{0,1,....0}, Tj=TnN{0,1,..../}. Foreachi €S jeT,w; will be a function defined
onTj by w; j(X) = ¢ x for all x e Tj. Letr be rank of the matrix sul®(ny,ny, f),Sq-1,T,—1). IS
the dimension of the vectorspace generated by the funotgs,, i € S§,—1. Suppose thabC S, _1,
|§ =r so that the set of functio® = {w; ,_1 | i € S} are linearly independent.

According to the definition ofp(ng,ny, f), we have to randomize a functiapwith values inF,
which is defined on the intervé{; + ko, n; +np — 1). We randomize the values gfequentially for each
X € [k1+ko,m+np—1)N(S+T). Assume thax € [k + kz,n1 +n2 — 1)] andg(y) has been randomized
already for ally < x. Suppose that for a suitably chosenSn{k,...,m—1} andj e TN{ky,...,np—1}
we have + j = x. By the assumption of the lemma this will happen for at Ieaslifferent values ok.
Therefore, it is enough to show that for suchxatime following holds with a probability at Iea%t the
functionw, j is linearly independent from the set of functids= {w; ;|| € S}. (Such an independence
obviously implies that the rank of the matrix gd¥(n1,np, f),S T) is greater thanS =r.) Before the
randomization ofj(x) the functionw; j is known in every point offj with the exception of. Since there
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are two possibilities for the value of j at j, we have two functions, v, hence for the randomization of
g(x) we haveP(w; j =u) =P(w; j =V) = % Consequently, it is enough to show that at least one of the
two vectorsu, vis linearly independent from the ddt Indeed, if both are linearly dependent, then their
difference is also linearly dependent on them, thatis,v = 3, 57Ws; whereys # O for at least one
s S We show that this is impossible. Indeeds v is a function onlj which is zero everywhere but at
jand(u—v)(j)= 1. Consequently > k, implies that the restriction af —vto Ty, is 0. Therefore we
get thatzsegys YsWsk, = 0. The functionswsy, are linearly independent so we hape= 0 for alls€ S
in contradiction to our assumption. O
Lemma 4.7. Assume that for each 5 1,2, Ii”,...,ll(‘), is a partition of the intervalO,...,n) into
pairwise disjoint subintervals, 8,52 ¢ {0,1,...,n— 1}, and|(SY N 1Y) + (S2 N1?)| > m for all
i =1,...,1. Then, for any positive integer r, the probability that the ranlsof(®(n,n), SV, S?) is not
greater than I-r is at most

27 My =M

1I<ii<---<ir <l

Remark 4.8. If we define the random Hankel matri(n,n) over an arbitrary field~ in the way de-
scribed inRemark 4.§just afte.emma 4.5, then our lemma remains true if we substitjig ™.~
for 2=M1~~Mr jn the last expression of the lemma.

(j)l impliesx <y, and assume further

Proof ofLemma 4.7 Assume that for allj = 1,2, x € Ii(j), yelip

thatforallj=1,2,i=1,...,I, 1V = [bj;,bj ;1) Let

g =g =sVnobyia) ,

k=1

and letd; = sub[@(n,n), S, S?). If the rank ofX = sub[®(n,n), SV, S?) is not greater thah—r
then there areintegers I< iy < ... <i; <| so that the rank ob;, and®; .1 is the same for=1,...,r.
We show that for each fixed, .. .,i; the probability of this event is at most2:~~™ which clearly
implies the statement of the lemma. Suppose that.,i; are fixed. According to the definition of
®(n,n) we randomize ah € func(2n—1,2). We pick the values di on[2n—1,2) sequentially. Assume
that for some € {1,...,r} the values oh(0),...,h(b;, 1 +bi, 2) — 1 have been already fixed. We define a
function f on the se{0,...,h(b;, 1 +bj, 2) —1} by f(y) =h(y) forally=0,...,h(bj_ 1+ bj, 2) — 1. Now
we randomize the values ofx) for all x= by, +b,,..., b, +bi,,, — 1. We apply Lemma.5 for
this part of the randomization withy — b1 j, kj — by, j for j =1,2,S— 8§, T — §? , m—m,, and
for the functionf defined above. We get that the probability of the event @k ) = rank(®;,) is less
than 2™. This implies that the probability that raf®;, ,) = rank(®;,) for allt =1,...,r is at most
27 My O

The following lemma will be used to give an estimate on the probability that the rank of a matrix
SU(A,ST) is at leastR where the set§ T C {0,1,...,n— 1} are fixed andA is a random Hankel
matrix overF,. Since the statement of the lemma depends on many parameters we restate their roles
as described in the “sketch of the proof” dheorem 4.2 The sizes of the setS T are the same:
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S| = |T| = g. We may think oft as a large constant, although the lemma requires Brtyq. In the
“sketch of the proof” (using the notatid@®— X, T — X;) we made the simplifying assumption th3g,
and partitioned botlsandT into t% subsets each of sizé. Without the assumptiog?|t, we will take
first subsets of botls and T with tZLt%J elements and partition these subsets into classes each of size
t2. ThereforeQ = | ] of the lemma refers to the number of classes in these partitions. In the estimate

given in the lemma the factor R-R+D¥ js an upper bound on the probability that if we selRet 1
pairs of corresponding classes from the two partitions, then the remaining ones do not increase the rank

of sunA,ST) in the sense explained in the “sketch”. The fa((tgf%rl) is the number of ways that we

can select these— 1 pairs from theQ pairs of classes. The factq@&)2 has the following meaning. In
the proof we consider all of the pairs of subs8ts- S T’ C Sand estimate the probability that for at
least one of them the rank of sy S, T’) will be R or greater. Then we multiply this estimate by the
number of possible pairs of se8T'. Since we selec8, T’ with |S| = |T’| = Qt (they contain exactly

t elements from each class) the number of possible selections is a(&])ozst

Lemma 4.9. Assume that Ju, Rt are positive integers?t< q < n and R< Lt%J. Suppose further that
A={a ;},i=0,...,n—1,j=0,...,n—1lis arandom n by n Hankel matrix oves,Faken with uniform
distribution on the set of all such matrices. Let p be the probability of the following event:

(8). forall SC [0,n),T C[O,n), |§ = |T| = qthe rank of the matrix sy, S T) is at leasR.
Then )
n Q (O 2
~1_ (Q-R+1)t
P=1 <Qt> <QR+1>2

Remark 4.10. This lemma also remains true with some modifications over an arbitrary field if we
randomize the Hankel matri& according to the distribution described in the remark dfesnma 4.5
Namely we have to substitut®|~(Q-R+Dt* for 2-(Q-R+1t* jn the last expression of the lemma.

whereQ = [2].

Proof ofLemma 4.9 We will define a functiond on the set of all ordered pairsy, X) with X; C
{0,...,n—1}, for j = 1,2, |X1] = |X2| = q. Before getting into the details of this definition, recall
from the “sketch of proof”’ofTheorem 4.2hat, roughly speaking, we gt (X1, X2)) in the following
way. First we partition bottX; andX; into classes of size€. Then we select subsejél), Ji(z) from
each pairs of corresponding classes with the propertw.ﬂfw%t: \Ji(z)\ =t, \Ji(l) +Ji(2)] =t2. The pair
(Ui Ji(l),Ui Ji(2)> is the value off.

Each value of the function will be a pafZ;,Zy) so thatZ;,Z, C {0,...,n—1} and|Z;| = |Z,| =
L%Jt- The definition is the following. Assume that the pé¥, Xz) is given with the described prop-
erties. For each = 1,2 we pick pairwise disjoint subseKﬁ(j), el Kg) of X, whereQ = {t%j, so that
|Ki(j)\ =t?forall j=1,2i=1,...,Qandx e Ki(j), ye Ki(,j) impliesx<yforall j=1,2,1<i<i"<Q.
(By the definition ofQ this is possible.)

Assume now thatan=1,...,Qis fixed. We appljtemma 4.3vithU — Ki(l), V— Ki(z). LetU’,V’
be the sets whose existence is stateddmma 4.3and IetJi(l) =V, Ji(z) =V'. Finally letZ; = UinlJ(j)

THEORY OF COMPUTING, Volume 1 (2005), pp. 149-176 167


http://dx.doi.org/10.4086/toc

MIKL OS AJTAI

for j = 1,2 and letF((Xy,X2)) = (Z1,Z5). Clearly the pairZ;,Z,) satisfies the conditions described
above as well as the following additional properties:

(@). forall j = 1,2J£j),...,Jg) is a partition ofZj, [J| =tforalli=1,...,Q,

(b). forall j=1,2,1<i<i’<Qxe IV, ye 3V impliesx <y,
(c). forall j=1,2 andi = 1,...,qwe havez; C X; and]Ji(l)| + \Ji(2)| =12

Assume now thafZ;,Z;) € range(F). We estimate the probability,, z, of the event that the rank of
the matrix subA, Z;,Z,) is smaller tharR.

We applyLemma 4.#with | — Q, Ii(j) - Ji(j), SV 527,99 57, m —»t2r — Q—R+1. We get
thatpz, 7, is at mosQQ— R+ 12 (Q-R+1¥ Therefore, using thdZ;| = Qt, we get that the probability
that the rank of the matrix s@B, Z;,Z») is smaller tharR for at least on€Z;,Z,) € range(F) is at most

2
|range(F)| (Q —QR—|— 1) 2~ (Q-R+ 12 (SJ (Q_?H_ 1> 2—(Q-R+1t?

For each paifS, T, with the properties given in the lemmadf(ST)) = (Z1,2,),thenZ; CS Z, C T
and this implies that rarfekub(A, S, T)) > rank(sub(A, Z1,Z,)) so we have the same upper bound on the
probability that the rank of s, S T) is smaller tharR. O

Proof of Theorem 4.2 Assume thab > 0 is sufficiently smallgc; > 0 is sufficiently small with respect
to 8, andc, > 0. Suppose further thatis sufficiently large and,;n < q < n. We applyLemma 4.9with
n, g, R=cy|log(3)| g, andt = [6*[log(])|]. We get that the probability that rank of §ubS,T) is

at leastRis at least
2
p>1— n Q o—(Q-R+1)12
- Qt) \Q-R+1

whereQ = | 4 ]. We show that
2
n Q o~(Q-R+1)2
ot) \Q-R+1

is at most% by giving upper bounds in its factors. As we have remarked already at the end the of sketch
of the proof, the crucial fact that leads to the desired result is that in the exponent of 2 we have the factor
t? and not onlyt. We will see that in the actual estimates ttfisnakes it possible to get the strong upper
bound we need.

We will use that if 0< o < % nis sufficiently large, anat < an then

X < e2an|ogé
an/ —

Lety= % andA = %‘2. Clearlyc, < vy< 1 and% < A < 1. Hence

< n) _ < n < e2y7tt*1nlog(y*1)r1t) _ e2y/lt*1n(|og)Fl-&-log)fl-»-logt)
Qt yAt—1n '
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Using that—tlogy2 =6, ttlogA 1 <tllog2<t~1 < @, andt—logt <tz < 82 we get that

IN

n 2 1 1
<Qt> < MAO+002)n — odh g

and

(Q QR+ 1) <29 = 27N < i

if 6 is sufficiently small. Moreover,

2~ (Q-RH* < - §Qt _ o—gVAt %N _ o—gyAn
These inequalities imply that

n\?2 1
Q o—(Q-R+DE  phyAnt Ayin-dyAn o o—(b-F)an _ 2
ot) \Q-R+1 = = 2

if nis sufficiently large. (Here we use that < yand% <A) O

5 The proof of Lemma 3.5

5.1 Alemma about disjoint sets of variables

In this section we proveemma 3.5using Lemma 9 of4]. (This is the most important technical lemma

of that paper with a long proof.) We reformulate below this result frdjrag Lemma Alto make it
consistent with the terminology of the present paper. In the proof we will also use other lemmata from
[4]; we will formulate them ademma A2 Lemma A3 andLemma A4in the present paper. These
latter three lemmata have short proofs (giverdif) {ising only the definitions of the concepts contained

in their statements. The following definitions are needed for the statemeatroha Al

Definitions.

1. Assume thafB is a branching program withinput variables and is an input forB. (Recall that
an input is a{0,1}-valued function defined 0f0,1,...,n— 1} with the meaning that the value
n(i) is assigned to the varialbke) Atinputn the branching program follows a path in the directed
graph§ as described in the definition of a branching program. We associate a time (a nonnegative
integer) with each node of this path. If the patlvisvy, .. .,Vv;, wherevy is the source node ang
is a sink node, then for all integers [0, 1], we will say that the program iat node vy at time t
with respect to input). We will use the notatiostate(t,n) = «.

2. Assume thagtate(t,n) =w, andvar(w) = X. In this case we will say that the prograrocesses
the variablex; at timet.

3. An input n is visible if each variablex;, i = 0,1,...,n—1 is accessed at some time during the
computation performed at inpyt
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4. Assume thafB is a branching program so that the path associated with each input is of length
In this case we will say that for each input leagthof the program ig.

Additional assumptions about B. Without loss of generality we will make the following two addi-
tional assumptions about the branching progfum the proof ofLemma 3.5

(a) We assume that every input is visible. Indeed, we can modify the branching prgsanthat
the new branching prograf¥ first reads the value of each variable and then continues with the original
computation ofB. The length and the size of the program are thus increased omly boreover, if
Lemma 3.5holds forB’ then clearly it also holds foB since, apart from the size and the depth of the
program,Lemma 3.5reats the program as a black box, it speaks only about the function defined by the
branching program.

(b) We assume that, independently of the input, the length of the branching program is &ractly
that is, for each inpufy the program reaches a sink node at tine This is not an essential restriction
because there is another progréh whose size is larger than the size®by only a factor of at most
n?, so that progran®’ works exactly the same way as progrénbut also counts the time and wheén
reaches a sink nodghen it works further till timeknwhen it gives the same output as the outpuBait
nodev. (We may assume that at each titria this new additional time interval, the branching program
B’ accesses, e.g., the variakig)

As a consequence of this second assumption, for each fixed inphe functionstate(t,n) is
defined for allt = 0,1,...,nk and the branching program accesses a variable at each fiond =
0,1,....kn—1.

Definitions.

1. Suppose that is a real number witl € (O, %). We assume that a partition of the 611, .. .,kn—
1} into intervals is fixed so that the length of each interval is betweeand 2n. J(°) will denote
the set of these intervals. If the choiceamfs clear from the context, we will omit the superscript
c.

2. Assume thal C {0,1,...,kn—1} is a set of integers. The set of all integers{0,1,...,n— 1},
so that the input variablg is accessed by the branching program at somd, at inputn, will
be denoted byegister(T,n). The set of all integer$ in register(T,n) so that the value of
variablex; is not accessed at any time outsii@t inputn will be denotedcore(T,n). Clearly
core(T,n) Cregister(T,n).

Remark 5.1. The notationregister(n) was motivated by the fact that, id][ instead of branching
programs we work with random access machines, and so instead of reading the values of variables the
machine reads the content of registers. To make the two papers more compatible we did not change this
notation.

Definitions.

1. Ifa o > 0is given,F C J(°), andy is an input, therstem(F, x) will denote the restriction of
onto{0,1,...,n—1}\core(F,x).

2. Suppose that C {0,...,kn—1}. We say thak is at theright borderof T if x¢ T andx—1¢€ T.
The set of those integers which are at the right borddr will be denoted byright(T).

THEORY OF COMPUTING, Volume 1 (2005), pp. 149-176 170


http://dx.doi.org/10.4086/toc

A NON-LINEAR TIME LOWER BOUND FORBOOLEAN BRANCHING PROGRAMS

3. Suppose thal C {0,....kn—1} and x is an input. Letf be a function defined on the set
right(T), so that for allt € right(T) we havef(t) = state(t,)). We will call f the right-
statefunction of the seT at inputy and will denote it byrstater .

Remark 5.2. The significance of the sebre(T, %), the right border off, and the functiorighty ,

is the following. Assume that starting from the ingutve change the value of some of the variables in
core(T,x) in a way that for the new inpyt’ we haverighty , = righty .. Then the output of the
program remains unchanged.

Lemma Al. For all positive integek, if o > 0 is sufficiently small with respect tq € > 0 is sufficiently
small with respect t@, n is sufficiently large with respect to, B is a branching program with input
variablesB is of size at most?, for each input the length of the progrankig andG is a set of visible
inputs, then the following holds. There exist- o, F1,F, f1, f2, H satisfying the following conditions:

(9). H C Gand[H| > 2G|
(10). Fy,F, are disjoint subsets ¢f°)

(11). foralli=1,2andj=3—1iif x,& € H, andsten(F,x) = sten(F,§), thencore(Fj,x) =
core(Fj, &)

(12). |core(F;,x)| > k*nforall ¥ € H andi = 1,2, wherer = 1— &,

(13). rstate, yp = fiforally cH,i=1,2.
(14). k < 2-Ilogol

Motivation. The intuitive meaning oEemma Alis the following. Suppose that a branching program
works in linear time. Then, if we segment the time into intervals of length abauit is possible to
select two disjoint sets of intervalg andF, so that in each of them, for a large number of inpytsve
access many variables (the ones:tre(Fs_j, x)) that are not accessed anywhere else. Moreover the
setsk; andF, can be selected with the additional property described below. If the state of the branching
program is fixed at the right borders Bf andF, (Condition (13), thencore(F1,x) andcore(F, %)

are independent from each other in the following sense. In order to know whatégF, x), we do

not have to know the values of the variablegére(Fs_i, x) (Condition (11). This last condition is the
crucial part of the lemma, everything else in it can be proved by a simple counting argument.

Remarks.

1. Condition (14)was not included in the original statement of the lemmai]rb[it its proof clearly
implies it. The exact form of the upper bound iis not important for us, any upper bound of the
type x < g(o) where lim_.. g(x) = 0 would be sufficient for the proof dfemma 3.5

2. We have changed the notation of the original lemma (by substitwtifmy A) to make it more
compatible to the notation afemma 3.5
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3. The lemma in 4] was originally formulated for random access machines, however in the case
when the possible contents of the input registers form a set with two elements, the notion of the
random access machines used there is identical to the notion of (2-way) branching programs.
ThereforeLemma Alis a special case of Lemma 9 d@f [

4. There is a slight difference between the notation of the two paperg] em[input is a function
defined on the sdtl, ...,n} while in the present paper it is defined é& 1,...,n—1}.

5. The proof ofLemma 3.5from Lemma Alis almost identical to the proof of Theorem 4 df [
from Lemma 9 of the same paper.

5.2 ReducingL,emma 3.5to Lemma Al

As we pick the values of the various parametersémma 3.5ve will describe the values of the param-
eters ofLemma Alwhen we use it in our proof.

Assume thak is given (we will applyLemma Alwith the same value df). Now we picko; and
o> S0 thato; is sufficiently small with respect th and o> is sufficiently small with respect to;. Let
o = 30». Lete > 0 be sufficiently small with respect @y, let n be sufficiently large with respect &
and letB be a branching program of lengktn (for each input)and size at most'2 (e, B andn are the
same in the two lemmata.) We piéke {0,1} so thatiB=1(8)| > 2"1. LetG = B~1(§) in Lemma Al
(As we noted earlier we may assume that every inpuB a$ visible, soG meets this requirement of
Lemma Al) Now we pickk, F,F, f1, fo, H with the properties listed ihemma Al

As a first step in the proof dfemma 3.5wve prove that there is a € H so that for each= 1,2 the
following condition is satisfied:

(15). assume tha = |core(F, x)| andY; is the set of all partial inputg defined orcore(F, ¥) so that
XN € H; then|Yj| > 227%n2s,

For the proof we use the following two lemmata frof).[The first oneLemma A2is Lemma 10 in
[4], the second oneemma A2 is Proposition 3 in that paper.

Lemma A2. Suppose thaF C J, x, & are inputs withstem(F, x) # stem(F,§) andrstate, jr =
rstateg jg. Then there is am € domain(stem(F,x)) Ndomain(stem(F,§)) so thaty(x) # &(x).

Lemma A3. Assume thaiA C A’ are finite setsP is a partition ofA, P’ is a partition ofA’, each class
of P is contained in a single class Bf, andd = |A||A’| L. Then for allA > 0, there are at most|A|
elements of A so that ifC,C’ are the uniqu®, P’ classes containingthen|C||C'|~1 < Ad.

As a first step in proving the existence ofyac H so that for alli = 1,2 Condition (15)is satis-
fied, we fix ani € {1,2} and give a lower bound on the number of inpgte H with Condition (15)
(with this fixedi). We define a partitiom; of H in the following way. Vy,& € H, &, x belong to the
same class ifstem(F, x) = stem(F,&). It is a consequence of this definition thatifandé do not
belong to the same class @f, then the functionsten(F, x) andstem(F,&) must be different (for
the fixed value of). Since the domains of these two functions, thaf{®,1,...,n— 1}\core(F, %)
and{0,1,...,n—1}\core(F,&) are not necessarily identical, in principle it would be possible for the
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functionsstem(F;, x) and= stem(F;, &) to be compatible, that is, to be identical on the intersection of
their domains. HoweveCondition (13)of Lemma AlandLemma A2imply that this can never happen,
that is,

(16). functions that belong to different classesJpfare not compatible.

We will denote byH’ the set of all input€ so that there is g € H with the property thaf is an
extension oktem(y,H). For each fixegy € H letW, be the set of all € H’ so that{ is an extension
stem(F, ). Condition (16)implies that the seté/,, x € H (we take each of them only once) form a
partitionT] of H'. Clearly each class df; is contained in exactly one classf

We want to applyemma A3with A— H, A - H', P — 7;, P — T, andA — % Since, by the
definition of G, we have G| > 2"~1, Condition (9)of Lemma Alimplies thatH| > 2-%"2"-1, Obviously
IH’| < 2"and sod = [H||H'|~1 > 327*". Therefore, according tbemma A3 for at least}|H| inputs x
from the seH, the following condition is satisfiedy belongs to a class i whose density in the unique
class ofJ] containing it is at mosgd > %2*"”. Let X be the set of all inputg € H with this property.
Since|X| < 3|H| for bothi = 1 andi = 2 we have thatH\ (X; UX)| > $[H|. Lety € H\(X UXy). The
definition ofX; implies that for all = 1,2, y belongs to a class @f whose density in the corresponding
class of7] is greater thar%Z—’(”. Since each class 6f contains exactly 2 elements this implies that
meets the requirements @bndition (15) _

Assume thajy is fixed with Condition (15)andY;, i = 1,2 are the sets defined in the description of
that property. We will prove the following:

(7). forall g €Y, i =1,2 we havey 1n1)1m2 € B~L(8).
For the proof of this fact we use the following lemma which is Lemma 2in [

Lemma A4. Assume thaj is an inputns, 12 are partial inputsT;, T, € {0,1,...,nk—1}. If x, n1, N2,
T1, andT; satisfy the following conditions, theB(x) =B ((x 11n1)1n2).

(18). domain(n1) anddomain(ny) are disjoint.

(19). T, andT; are disjoint.

(20). foralli = 1,2 we havedomain(n;) C core(T;, %)

(21). foralli = 1,2 we haverstater, , = rstatey

(22). foralli, j € {1,2},i # j we havedomain(n;) Nregister(Tj,x1nj) = 0.

To prove thaCondition (17)is satisfied byy, we show that the assumptionslafmma A4hold with
X — X M1, M2, Ti — UFy, andT, — UFe.

Condition (18) By the definitions ofy; and the functiorcore we havedomain(ni) = core(R, ) C
F fori =1,2. Condition (10)of Lemma Alimplies thatF; NF, = 0, Sodomain(n1) anddomain(ny)
are disjoint.

Condition (19) This is a consequence Bfoposition (10pf LemmaALl.

Condition (20) By the definition ofn; this holds with equality.

Condition (21) This follows fromy, x 1 ni € H andCondition (13)of LemmaALl.
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Condition (22) Assume that, | € {1,2}, i # j are fixed. We havelomain(n;) = core(F,%).
Condition (11)of Lemma Aland the fac ! n; € H together imply thatore(F, x) = core(FR, x 1 n;).
Thereforedomain(1i) = core(R, x 1 n;). FLNF = 0 so at inpuy tn; and at times belonging to the set
\UFj we can never access a variabletire(F, x 1 j), and consequently

domain(nj) Nregister(Tj,x1nj)) =0 .

Since all of the assumptions bémma A4hold, its conclusion must hold as well and g®atisfies
Proposition (17)

We will need the following observation to conclude the proof. ¢ete(F, x) = S. For anyi = 1,2
and for anyX C §, there is an¥;(X) C Y; so thatn(x) = {(x) for all n,¢ € Yi(X), x€ S\X, and
Yi(X)| > £27*n2XI. Indeed, we may partition the elementsypfnto disjoint classes according to the
values of its elements on the sB{X. Since there are at most 2%/ classes, at least one class must
contain at least 2*XIYj| elementsY;(X) will be such a class. The stated lower boundYy(X)| and
the lower bound of;| formulated inCondition (15)imply |Y;(X)| > £2-*n21XI.

By Condition (12)of Lemma Alwe have|S| > k*nfori=1,2. Let[%xfn] =r. Letz be therth
smallest element & and assume that e.g. < 2. LetW, be the set of the smallest elements & and
let W, be the set of the largest elements &. LetY; = \Z(VV.) fori = 1,2. According to our previous
observation we have

(23). foralli =1,2,[Y;| > L2Mi-xn,

By the definitions of, z, andW, Condition (1)is satisfied by, andW,. We claim that the other
requirements of the lemma are also met by the following choice of the various parameters. We pick two
partial inputsé; € Y1, £ € Yz in an arbitrary way. Lefy = (x1¢1)18, A = 2k, andu = Wy n~! =
Mb|nt. (W, Y; have already been defined.)

The definitions ofo1, 02, €, andé at the beginning of the proof dfemma 3.5show that the require-
ments of the lemma, stated before the conditibrs (o2, 01), 1 € (02,01), are metA € (o2,01) is an

1
immediate consequence bdf= 2k, the inequalitie < k, k¥ < 2-110901% “3nd the fact that we choose
Oy = %o so that it is sufficiently small with respect tq.
The fact thau € (02, 01) is a consequence of the following facts= 1— ﬁ (cf. Condition (12)of

1
Lemma A), u = Wn~2, W = [3k7n], o < k < 2711°6°1* | 5 = 305, ando is sufficiently small with
respect tasy. Indeedo = 303 is sufficiently small with respect to; (for a fixedk), and so

On the other hand
= }K‘Tn n’1>}1<1>}01*5i>}6—6
=13 3" <3 =307 92

and sou € (02,01).
We have already seen thaondition (1)of Lemma 3.5s satisfied.
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Condition (2)of Lemma 3.5s a consequence of the definitionof
Condition (3) Using the inequality o€ondition (23)we get|Y;| > $2WI=xn > 2W[=An — pun-4n,

Condition (4) By the definition ofr = |W| = un we haveun = [%Kfn] and so

1 1 12 1
>71’:777:7f177.
Therefore
’Jl—"—ﬁ > (;)1+1()1(1<(2)(1_5(13‘<)<1+1&k) > 21 .

(Here we used that bgondition (17) bothx andA > 0 are sufficiently small with respect ko)
Condition (5)of Lemma 3.5is a consequence @ondition (17)and the definitions of andY;.
These definitions imply thaty 1 n1) 1n2 = (x 1n1) tn, wheren! = niU §ils—w € Yi.
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