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Abstract: We consider the maximization version of the edge-disjoint path problem (EDP).
In undirected graphs and directed acyclic graphs, we obta®(gm) upper bound on the
approximation ratio whera is the number of nodes in the graph. We show this by es-
tablishing the upper bound on the integrality gap of the natural relaxation based on mul-
ticommodity flows. Our upper bound matches within a constant factor a lower bound of
Q(y/n) that is known for both undirected and directed acyclic graphs. The best previous
upper bounds on the integrality gaps w@gmin{n%3,/m}) for undirected graphs and
O(min{y/nlogn,/m}) for directed acyclic graphs; here is the number of edges in the
graph. These bounds are also the best known approximation ratios for these problems. Our
bound also extends to the unsplittable flow problem (UFP) when the maximum demand is
at most the minimum capacity.
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1 Introduction

The edge-disjoint path problefEDP) in undirected graphs is defined as follows. We are given an
undirected grapl& = (V,E) andk node pairssits, Sto, ..., Stk (& pair can occur multiple times). The
decision version asks if there is a collection of edge-disjoint pBt, . .., P such that for 1< i <Kk,
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R is a path frons tot;. We consider the maximization version where we seek to find the largest subset
of thek pairs that can be connected by edge-disjoint paths. In the weighted case, eagt Ipair a
non-negative weighty; and we seek to find the largest weight subset of pairs to connect. In the directed
version, thearc-disjoint path problemeach demand consists of an ordered p&it;) and we require a
directed path frons to t;. For expediency, however, we refer to all versions as EDP. We also consider
a generalization of EDP called thumsplittable flow problenfUFP). In this problem the edges of the
graphG have non-negative integer capacities given by a funatidd — Z* and each of th& pairs has

an integer demand; for pairi. A subsetS of the pairs isroutedif there is a path collectioR,i € S

such thaP® connects tot; and for each edgec E, Jicsecp di < c(€). We say that an instance of UFP
satisfies thao-bottleneclassumption idmax = max d; < mingc(e) = cmin. Note that EDP is a special
case of UFP witltd; = 1, 1<i <k andc(e) = 1, e € E. We refer to the special case of UFP when only
thed;'s are 1 asapacitated EDP

EDP and UFP are fundamental problems in combinatorial optimization and also arise in a number
of applications. These problems are strongly NP-hard even in very restricted settings and also hard to
approximate. Consequently there is a large body of literature on special cases and variants. The natural
multicommodity flow relaxation (seBection2 for more details) plays an important role in providing an
upper bound on the optimum value. In this paper we focus on approximation algorithms and integrality
gaps of the flow relaxation for arbitrary instances.

We briefly review known results for general graphs. For a more comprehensive view, including
results for special classes of EDP, séelp, 17, 11]. In discussing results for EDP we normally assume
that the underlying graph is a simple graph andmusadm to refer to the number of nodes and edges
(arcs) respectively. For EDP it is known that the integrality gap of the flow LR(ig'n) even in
undirected planar graph8][ A first upper bound on the approximation ratio for EDP w&{s/m) [10].

This also holds for capacitated EDP and in fact can be obtained using a simple greedy algorithm that
iteratively picks an arbitrary unconnected pair and picks a shortest feasible pathlfardt 14]. The

best upper bound on the integrality gap for EDROignin{n%3,,/m}) in undirected graphs4] and
O(min{n2/3logl/3n, m}) in directed graphslfg]. It has been an interesting open problem to bridge

the gap between the upper and lower bounds on the integrality gap for EIR. thme{ greedy algorithm

was combined with an algorithm based on single source flow (for a special class of instances called
v-separable instancg$o obtain a bound oD(+/nlogn) in directed acyclic graphs (DAGs). Guruswami

et al. @] showed that EDP in directed graphs is hard to approximate within a fac(b(nn’f/zfg) unless

P = NP. Their result applies to sparse graphs, and hence as a functigritadstablishes a hardness
factor ofQ(n2-¢). Ma and Wang15] showed that EDP in DAGs is hard to approximate within a factor

of Q(2°9" M) unlessNP C DTIME(nPo¥odm) . For undirected graphs, Andrews et dl} $howed that

EDP is hard to approximate within a factor @flog*/?~¢ n) unlessNP C ZPT IME(nPoYodM))  |n [4]

it was conjectured that that the approximation threshold for EDP in directed graphs and the integrality
gap of EDP in undirected and directed graph®is/n). Here we improve the upper bound@./n)

for undirected graphs and DAGs. In fact we prove the following stronger result.

Theorem 1.1. The integrality gap of the relaxation based on multicommodity flov@g {gn) for capac-
itated EDP in undirected graphs and DAGs.

Algorithms for UFP have typically been based on those for EDP. We distinguish between instances
that satisfy the no-bottleneck assumption and those that do not. First we discuss the general case where
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dmax can be larger thathin. The best upper bound known in this casé){s/mlogdmax/cmm) [9]evenin
directed graphs. Azar and Regé&} §howed that unled8 = NP, UFP is hard to approximate in directed
graphs within a factor o2 (m'~—¢) on sparse instances which translates to a hardness fadxnbf¢)

as a function oh. Note that the hard instances constructed?inhjave the property thadmax/Cmin iS
exponential irm. For instances satisfying the no-bottleneck assumption, Baveja and Srinigasdn |
tained anO(,/m) approximation. Kolman and Schiedeld”] showed that ifw; = d; then anO(,/m)
approximation can be obtained eveifax > Cnin. Under the same assumption on the weights, Kolman
[13] extended the EDP bounds i4,[18] to UFP. It is known from the work of Kolliopoulos and Stein

[12] that, for a certain class of packing integer programming problems (PIPs) that they call column re-
stricted packing integer programs (CPIPs), the integrality gap for instances that satisfy the no-bottleneck
assumption is within a constant factor of the integrality gap for unit-demand instance6](&gespme
refinements and extensions). From this we immediately obtain the following coroll@hetarem 1.1

Corollary 1.2. The integrality gap of the relaxation based on multicommodity flov&(ign) for no-
bottleneck instances of UFP in undirected graphs and DAGs.

We proveTheorem 1.1in Section3, after setting up some notation and proving a lemma on single
source flows irBection2. We remark that Thanh Nguyehf] has independently obtained an approxima-
tion ratio ofO(,/n) for DAGs, and subsequent to our work, obtained an altern@tjygn) approximation
in undirected graphs.

2 Preliminaries

An instance of capacitated EDP consists of a gréph (V, E), integer edge capacities specifieddyy
E — Z*, andk node pairs;t1, Sto, . .., Stk. Each paiist; has a non-negative weigivt and demand; =
1. In a directed graph instance, the node pairs are ordé¢sed;), (S,t2), ..., (S, tk). For convenience
of notation we assume that any pair of nodes occurs at most once in the given instdagainalis a
node that is the end point of some pair in the given instance.

Multicommodity flow LP formulation:  For the given instance, we 18 denote the set of all paths
joining s andt; in G, and let? = U;P;. The following multicommaodity flow relaxation is used to obtain
an upper bound on an optimal solution to the given instance. For eactPgathwe have a variable
f(P) which is the amount of flow sent dd We letx; denote the total flow sent on paths for paifhe
LP relaxation is the following.

k

max$ wix; s.t
2
Xi—Zf(P) =0 1<i<k
Pe®
f(P) < c(e) VeeE
P:ecP

xi, f(P) € [0,1] 1<i<kPe?
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We work with the above exponential size path formulation for discussion’s sake, but there is an
equivalent compact formulation that can be used for computational purposes. We also remark that for
any fixede > 0, efficient combinatorial algorithms are known for obtainingLa- €)-approximation to
the above LP. LeoPT denote the optimal value of the LP on a given instance. In a solution, we call a
pathP fractional if f (P) € (0,1), otherwisef (P) € {0,1} andP is integral. If the total weight of flow on
integrally routed paths is more thapT/2, then we already obtain a 2-approximation. The interesting
and difficult case is when the fractionally routed paths contribute mastofnd we focus on this case.

From standard polyhedral theory, the number of fractionally routed paths in a basic solution to the LP is
at mostm. Therefore we can assume tleée) < mfor all edges. By making parallel copies of edges, in
the following, we assume that all edgesGrhave unit capacity.

2.1 Incremental augmentation of directed flow

Let G= (V,A,c) be a directed graph with integer arc capacities giver.blfor SC V, we denote by
85 (S), or simplys*(S) if Gis clear from the context, the set of afesv) such thati € SandveV\ S
Similarly 65 (S) denotes the set of ar¢s,v) withuc V \ Sandv e S Lets;,s,...,s¢ be distinct nodes
(terminals) that seek to send flow to a sink nédé\ non-negative vectotbs, by, ..., by) is afeasible
flow vector if the terminals can routg, b; flow to t with b; flow originating ats, for 1 <i <k. LetB be
the set of all feasible flow vectors. For a vedtog B, let F (b) = ¥; b denote theotal flow. Forb € B
let I (b) be the index set of terminals that have integer flow, thatdd,(b) iff b; is an integer.

Theorem 2.1. Given be B and j¢ | (b) with b; > 0, we can compute’te B in polynomial time with
bj = [bj] and F(b') > F (b) such that

e b, < [b] for1<¢<k, and
e bl =by, foriel(b).

Proof. Let f be a flow that demonstrates the feasibilitybofWe obtain an auxiliary grap®’ from G
and f in the usual way: for each a@e A with positive flow, we retain the arc i6' if f(a) < c(a)
and assign it capacitg(a) — f(a). If f(a) > 0 we add a reverse agin G’ of capacityf(a). In G
we look for a directed path frors; to eithert or some terminag, with h ¢ I (b)U {j}. If we can find
such a directed path, we can increagevhile not changing the net flow out of any terminalliib), or
decreasing the total flow intb If the augmenting path allows us to incredseto [b;] we are done.
Otherwise we find another augmenting path and repeat. We need only to showbihiatribt integral,
then we can always find an augmenting path of the above type. Suppose riehelitte set of all nodes
reachable frons; in G'. It follows thatt and no termina, with h ¢ 1(b) U {j} belongs taS. Since no
arcs leaveSin G/, anya € &5 (S) has zero flow, in other wordf(a) = 0. Further, any ara € 84 (S) is
at capacity,f (a) = c(a). This implies that ocs: (g c(a) = Sicshi. Note that the only terminals iBare
sj and some terminals from{b). Thus the expressiofi.sb; cannot be integral sindg is not integral
while the rest of the summands are. This is a contradiction $incg: s c(a) is integral. O
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3 Proof of Theorem 1.1

In this section, we prov&heorem 1.1 The proof for undirected graphs differs from that for DAGs but
they share a common initial phase. For simplicity of description, we focus on the cardinalitywasg (
for 1 <i < k). We discuss the extension to the weighted case later.

Consider an optimal multicommodity flow solution for a given instance of EDP arfd3e}; x; be
the total flow in the solution. For each paiwe decompose its flow into flow paths (alternatively we
can simply use the flow paths given by the solution). Suppose morefthaflow is routed on flow
paths of length at mos¢n. Then we can greedily build a solution of val@éf /,/n) as follows. First,
we remove all the flow on paths of length more thgdn, by assumption we have at ledst2 flow left.

Pick a flow pathP corresponding to some unrouted pair, say paRoute the pair along the pakhand
remove the edges & from the graph. In this process we discard all flow on paths that use any edge of
P as well as any flow on paths other thRithat carry flow for the pair. Since the length of the pai

is at most,/n, the total flow that we discard is at mogh+ 1. Repeating this process until there is no
more flow ensures that we rouf¥ f //n) pairs.

We now focus on the case when more thigi2 flow is routed along paths of length greater than
vn. Leta = f/\/n. If o <1, it suffices to route any one pair in the EDP instance to obtai@(@m)
integrality gap. Otherwise, since each flow path is of length at l¢ast 1, by the pigeonhole principle,
there exists a nodesuch that at leadt,/n/n = « flow is routed throughv . Discard all flow that does not
go throughv; we show how to rout€ () pairs using the flow that goes throughThe algorithms for
the undirected and directed acyclic graphs differ in this second phase and we describe them separately.

The above scheme that combines the greedy analysis with the analysis for the case when a large
amount of flow is routed through a single nodis from [4] where it was used to obtain &(\/nlogn)
approximation for the DAG case.

In the rest of the section, for convenience of notation, we will assume that a node in the graph is a
terminal of at most one of the paisgt;, Sto, ..., tk. Otherwise, we can add dummy nodes to ensure
this property; note that we are aiming for a constant factor approximation in this second stage and hence
the increase in the number of nodes does not contradict our overall goal@(f,am approximation.

With this assumption, we can specify the pairs by a matcMran the terminals.

3.1 Undirected graphs

Let x; denote the flow for pairthat is routed througt. This implies that andt; each send; amount of
flow tov. For a terminah € V we lety(a) denote its flow through, thusy(s) = y(ti) = x;. We have that
YiXi = a. Given any 0< € < 1/2, we either transformt into another feasible solutiad with several
additional properties or we can directly find an edge-disjoint routin@farc ) pairs. In the former case,
we perform an additional step to recover an edge-disjoint routin@f{er;) pairs from the solutiorx'.
The solutior’ satisfies the following properties: (i) fordi <k, X =0orx =1—¢, (ii) 3iX = Q(ea),
and (iii) X is a feasible multicommaodity flow for the pairs such that all flow still goes thrau@uppose
we can obtain a solutioxf with the properties described above. MtC M be the matching on paiis
such thak/ > 0. LetX be the set of end points M’. We have thaf; x = (1—¢)|M’| = (1—¢€)|X]|/2. We
solve a single source flow problem in a modified graph obtained by adding a supércsimkected to
each terminah with an end point ifM’ by a directed arc of capacity one; we find a maximum flow from
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vtot. By construction, there is a total flow of at leasy;X/ betweerv andt. Further, since the graph

has integer capacities, we can choose this maximum flow to be integral which induces a collection of
edge-disjoint paths fromto a subset of terminal§’ C X where|X’| > (1—¢€)|X|. LetM” be the largest
sub-matching oM’ induced by the terminals i¥’. Simple calculations show tha¥l”| > (1— 2¢)|M’|.

Hence, if we choose = 1/4, we obtain a matchiniyl” of sizeQ(«) such that the end-points bf” are
connected to be edge-disjoint paths and hence the pairs correspondi{ toe routed irG.

The transformation: We accomplish the transformationxfo X' using a clustering scheme frofd] [
For a grapH andy > 0, letyH denote the graphl with capacities of the edges setjtoWe find edge-
disjoint and connected subgraphs caltégsters G = (V1,E1), Go = (V, E2),...,Gp = (Vp, Ep) with the
following properties. Each terminalis assigned to exactly one of the clusters With) denoting the
index of the cluster that it is assigned to. Further for each cl@tese ensure that/e < 3 5(a)—i Y(a) <
2/e. It follows thatp = Q(ea). We give a sketch of the clustering scheme and refer the read8} to [
for more details. Consider an arbitrary rooted spanningTre€G. Letu be a deepest node Thsuch
thaty .1 y(a) > 1/¢; hereTy is the subtree of rooted atu. Letuy, Uz, ..., u, be the children otiin T
and letT, denote the subtree obtained frainby removing the childremi, 1, ..., uy and their subtrees
from T,. Let j be the smallest index such thBEETuj y(a) > 1/e. We letG; be the graph induced by

the nodes i} and set/(a) = 1 for all terminalsa € V(G;). By the choice olu andj it follows that
Yaev(cy) Y(@) < 2/e. We remove all nodes i from T exceptu, reducey(u) to 0 if u is a terminal,
and apply the procedure above iteratively to create the required clusters. Note that the clusters are not
necessarily node-disjoint but they are edge-disjoint and connected. Once the clusters are formed, we
create a multi-grapl® that has one node per cluster. For each gaiwe add an edge between cluster
I(s) andl(t;) — this might be a self-loop If(s)) = I (t;). We find a maximal independent set of edges
this cluster graph —we note that we are allowed to pick a self-loop in the set. It is relatively easy to argue
that the cardinality of this set ©(p) using the fact that le < ¥ ()i Y(a) < 2/¢ for eachG;; each
edge that is picked can eliminate other edges of total flow of at m@stl4t F’ be the set of self-loops
in F. We claim that the pairs associated with the edgds ican be routed i via edge-disjoint paths.
This follows because a self-loop corresponds to a pair with both end points in the same cluster; recall
that each cluster is connected and the clusters are edge-disjoint. TRUs2ifF|/2 we can rout€(p)
pairs. Otherwise we consider the pairs corresponding to the edgesknh LetZ be the terminals that
are the end points of the pairs corresponding to tli&g® edges.
The terminal fronZ with | (a) =i is termed theepresentativédor clusterG;. We obtainx’ by setting
X, = 1— ¢ for each pair with an end point it andx, = 0 otherwise. To argue that satisfies the desired
properties, we observe that the terminalZigan each simultaneously send a flow(bf- €) to v, in
the following manner. The representative termia@&h G; can send one unit of flow to other terminals
in G; such that a termina’ € G; receives flow of at mosty(a'). This follows from the fact tha®; is
connected anif 5. (x)—i Y(&) > 1/¢. By scaling down the flona can send1— ¢) units of flow to these
same terminals in the gragh — £)G;. Now each termina#’ in G; that receivecty(a’) flow can send it
to v. Note that initially each termina’ in G could sendy(a') flow to v, hence it can senéy(a’) flow
tovin the grapheG. Since theG;’s are edge-disjoint ane < 1/2, from the above description, we have
that the cluster representatives can each gé&nde) flow each tov in the graphG. This finishes the
proof of the transformation.
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3.2 Directed acyclic graphs

The clustering scheme that was at the heart of the proof for the undirected graph case does not apply in
the directed graph setting. When the graph is acyclic, however, we can reduce the problem to a highly
structured instance calledveseparable instancd][as follows. LetG; = G[V;] whereV; is the set of

nodes that have a directed pattvio G. Let G, = G[V,] whereV; is the set of nodes that have a directed

path fromv in G. SinceG is acyclic,V1 NV, = {v} and for any pair(s;,t;) that sends flow througt,

s € Vi andt; € V,. LetH = G; UG,. Note that all the flow for a paifs,t;) that goes throughiin G is

routed entirely irH.

An O(logn) approximation fowv-separable instances of EDP was showrdin Here we provide a
constant factor approximation by iteratively applying the incremental flow augmentation procedure of
Section2.1to the graph$s; andG,. Independent of our work, Nguyet] has shown that-separable
instances can in fact be solved exactlGif andG, are acyclic.

LetX ={(s,t) | 1 <i < p} denote the set of source-sink pairs with non-zero flow that goes through
vand letx; denote the flow sent bis,t;) throughv. Hencey;x = a. Let| be the subset of paiissuch
thatx; = 1. We describe an iterative procedure that modifies the original multicommodity flow through
v, £, to obtain flowsf®, £2.... f". In fi, we letx! denote the flow frons tot. We ensure that! is
integral for 1<i < k and zixih > |a/2]. To accomplish this, in th¢th iteration we pick an arbitrary
pair ¢ such thaké € (0,1). We stop if there is no such pair. We apply the incremental flow augmentation
algorithm fromTheorem 2.%twice. We apply it once to the gragby with v as the sink to augment the
flow of s, up to 1 without decreasing the flow of agywith xiJ = 1. We apply it another time to the
graphG, with v as the source, to augment the flowtafip to 1 without decreasing the flow of atiyvith
xiJ = 1. These two flow augmentations do not interfere with each other 8pemdG, are disjoint. In
the augmenting procedure @ we might reduce the flow from sonsgs tovin G;. Note, however, that
the total such lost flow i5 is at most 1- x; < 1. Similarly we might reduce the flow fromto some;’s
in the procedure ;. For any demantaffected in either augmentation, we x,e*tl =min{b;,b} < xi‘,
whereb, bf are the new flow values fa, t; respectively after the augmentations. Thus the total loss of
flow to other pairs in phasgis at most 21— x}). Since we started witk units of flow, it follows that
we end up with at leagior /2] pairs with unit flow each. Sind@; andG; are disjoint, the sources of the
chosen pairs can route their flow integrallyv@and similarlyv can route flow to the sinks of the pairs
integrally. This yields the desired disjoint paths.

Weighted case: For both undirected and the DAG case, it is straightforward to modify the algorithms
to handle weights on the pairs. In each step where we have a choice of choosing an arbitrary pair, we
choose the pair with the largest weight. The analysis extends directly and we omit the details.

4 Conclusions

We showed ar©(,/n) upper bound on the integrality gap for EDP and UFP in undirected graphs and
DAGs. This matches the known lower bound within a constant factor. It is conjecturditimf the
integrality gap for directed graphs is al®g,/n) and this remains an interesting open problem. Proving
this in the affirmative would essentially settle the approximability of EDP in directed graphs.
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