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items in a network oh nodes. Each search for a data item in the network t@Késgn)

time and requires at mo€)(log®n) messages. Our network is censorship resistant in the
sense that even after adversarial removal of an arbitrarily large constant fraction of the
nodes in the network, all but an arbitrarily small fraction of the remaining nodes can obtain
all but an arbitrarily small fraction of the original data items. The network can be created
in a fully distributed fashion. It requires on®(logn) memory in each node. We also give

a variant of our scheme that has the property that it is highly spam resistant: an adversary

can take over complete control of a constant fraction of the nodes in the network and yet
will still be unable to generate spam.
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1 Introduction

Web content is under attack by state and corporate efforts to censor it, for political and commercial
reasons9, 17, 40]. Peer-to-peer networks are considered more robust against censorship than standard
web serversq9]. However, while it is true that many suggested peer-to-peer architectures are fairly
robust against random faults, the censors can attack carefully chosen weak points in the system. For
example, the NapsteR§ file sharing system has been effectively dismembered by legal attacks on the
central server. Additionally, the Gnutellad4] file sharing system, while specifically designed to avoid
the vulnerability of a central server, is highly vulnerable to attack by removing a very small number of
carefully chosen node84, 35].

A more principled approach than the centralized approach taken by Napster or the broadcast search
mechanism of Gnutella is the use of a distributed hash t&8e [A distributed hash table (DHT) is
a distributed, scalable, indexing scheme for peer-to-peer networks. Plaxton, Rajaram, an@Richa [
give a scheme to implement a distributed hash table (prior to its definition) in a web cache environment.
Subsequent distributed hash tables have been suggest8d B2] 31, 41, 24, 25]. In the next two
subsections, we give details of our two results: a DHT which is robust to adversarial node deletion and
a DHT which is spam resistant.

1.1 Resistance to adversarial node deletion

We present a distributed hash table withodes used to storedistinct data items. The scheme is robust
to adversarial deletion of up to half of the nodes in the network and has the following properties:

1. With high probability, all but an arbitrarily small fraction of the nodes can find all but an arbitrarily
small fraction of the data items.

2. Search takes (parallel) tin@(logn).
3. Search require®(log?n) messages in total.

4. Every node require®(logn) storage.
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Some remarks. For simplicity, we have assumed that the number of items and the number of nodes
is equal. However, for anp nodes andn > n data items, our scheme will work, where the search
time remainsO(logn), the number of messages rema(:r)élog2 n), and the storage requirements are
O(logn x m/n) per node. Also for simplicity, we give our results and proofs for the case where the
adversary deletes up to @2 fraction of the nodes. However we can easily modify our scheme to work

for any constant less than 1. This would change the constants involved in storage, search time, and
messages sent, by a constant factor.

As stated above, in the context of state or corporate attempts at censorship, it seems reasonable to
consideradversarialattacks rather than random deletion. Our scheme is a distributed hash table that
is robust against adversarial deletion of /& Traction of the nodes. We remark that such a network is
clearly resilient to having up to 1/2 of the nodes removed at random (in actuality, its random removal
resiliency is much better). We further remark that if nodes come up and down over time, our network
will continue to operate as required so long as, at any point in time, atri¢2stf the nodes are alive.

Finally, we note that in our model, it is unavoidable that after an attack some nodes may not be
able to reach any data items and that some data items may not be able to be reachable by any nodes.
In particular, if all nodes store oni®(logn) pointers, then for any algorithm, the adversary can easily
target a setT, of O(n/logn) nodes and then delete all the nodes that are neighbors of any node in the
setT. The nodes iT will then be completely isolated and unable to reach any data items. Similarly, the
adversary can target some seQfh/logn) of the data items, and then delete all nodes on which those
data items are stored, ensuring that no node will be able to reach any data item in this targeted set. Thus,
the robustness of our algorithm is optimal up to ariddgctor among all algorithms that asealable in
the sense that the each node requdésgn) storage.

1.2 Spam resistance

Spamming has been a problem with peer-to-peer netwd@ks3[. Because the data items reside in the
nodes of the network, and pass through nodes while in transit, it is possible for nodes to invent alternative
data and pass it on as though it was the sought after data item.

We now describe a spam resistant variant of our distributed hash table. To the best of our knowledge
this is the first such scheme of its kind. As before, assomedes used to storedistinct data items.
The adversary may choose up to some constantl/2 fraction of the nodes in the network. These
nodes under adversary control may be deleted, or they may collude and transmit arbitrary false versions
of the data item, nonetheless:

1. With high probability, all but an arbitrarily small fraction of the nodes will be able to obtain all but
an arbitrarily small fraction of therue data items. To clarify this point, the search wibht result
in multiple items, one of which is the correct item. The search will result in one unequivocal true
item.

2. Search takes (parallel) tin@(logn).
3. Search require®(log®n) messages in total.

4. Every node require®(log®n) storage.

THEORY OF COMPUTING, Volume 3 (2007), pp. 1-23 3


http://dx.doi.org/10.4086/toc

A. FIAT AND J. SAIA

The rest of our paper is structured as follows. We review related wo8ettion2. We give the
algorithm for creation of our robust distributed hash table, the search mechanism, and properties of the
distributed hash table iBection3. The proof of our main theoreritheorenB.1, is given inSectiord. In
Sections we sketch the modifications required in the algorithms and the proofs to obtain spam resistance,
the main theorem with regard to spam resistant distributed hash tafilesosemb.1 We conclude and
give directions for future work isection6. Acknowledgements are Bection?.

2 Related work

2.1 Distributed hash tables — adversarial deletions and Byzantine faults

The work described in this paper was first publishedli@.| Work subsequent to this publication has
improved on the deletion-resistant network in various ways. Mayur D8}aiJes a distributed hash

table based on the multibutterfly network which improves in two ways on our deletion-resistant net-
work. First, he improves on our resource costs by requiring @flggn) messages per query afxdl)

pointers to be stored at each node in the network. Second, he shows how his network can be maintained
dynamically when large numbers of nodes are added or deleted from the network. Unfortunately, his
techniques do not carry over to the creation and maintenance of a spam-resistant network.

There is also subsequent work related to designing DHTs which are robust to Byzantine faults. Naor
and Wieder describe a simple DHT which is robust to each node suffering a Byzantine fault indepen-
dently with some fixed probability2[/]. Hildrum and Kubiatowicz 16] describe how to modify two
popular DHTSs, Pastry33] and Tapestry41], in order to make them robust to this same type of attack.
More recent work addresses the problem of designing DHTs which are robust to many Byzantine peers
joining and leaving the network over a long period of timeY, 36, 11].

2.2 Distributed hash tables — random deletions

Recent years have withessed the advent of large scale real-world peer-to-peer applications such as eDon-
key, BitTorrent, Morpheus, Kazaa, Gnutella, and many others. These networks can have on the order of
hundreds of thousands or even millions of nodes in them. Several distributed hash tables (DHTSs) have
been introduced which are shown empirically and analytically to be robust to random peer deletions
(i. e., fail-stop faults) 32, 38, 41, 33, 19, 24, 25].

Experimental measurements of a connected component of the real Gnutella network have been stud-
ied [35], and it has been found to still contain a large connected component even vighfeadtion of
random node deletions.

2.3 Faults on networks

2.3.1 Random faults

There is a large body of work on node and edge faults that occur independently at random in a general
network. Hastad, Leighton, and Newmah5] address the problem of routing when there are node and
edge faults on the hypercube which occur independently at random with some prolakility They
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give aO(logn) step routing algorithm that ensures the delivery of messages with high probability even
when a constant fraction of the nodes and edges have failed. They also show that a faulty hypercube can
emulate a fault-free hypercube with only constant slowdown.

Karlin, Nelson, and Tamakilf] explore the fault tolerance of the butterfly network against edge
faults that occur independently at random with probabilityrhey show that there is a critical probabil-
ity p* such that ifp is less tharp*, the faulted butterfly almost surely contains a linear-sized component
and that ifp is greater tham*, the faulted butterfly does not contain a linear-sized component.

Leighton, Maggs, and Sitamaraf(] show that a butterfly network whose nodes fail with some
constant probabilitp can emulate a fault-free network of the same size with a slowdowRBF2).

2.3.2 Adversarial faults

Itis well known that many common network topologies are not resistant to a linear number of adversarial
faults. With a linear number of faults, the hypercube can be fragmented into components all of which
have size no more thaB(n/+/logn) [15]. The best known lower bound on the number of adversarial
faults a hypercube can tolerate and still be able to emulate a fault free hypercube of the same size is
O(logn) [15].

Leighton, Maggs, and Sitamara(] analyze the fault tolerance of several bounded degree net-
works. One of their results is that anynode butterfly network containing—¢ (for any constant > 0)
faults can emulate a fault free butterfly network of the same size with only constant slowdown. The
same result is given for the shuffle-exchange network.

2.4 Other related work

One attempt at censorship resistant web publishing is the Publius sy38mvhile this system has

many desirable properties, it is not a peer-to-peer network. Publius makes use of many cryptographic el-
ements and uses Shamir’s threshold secret sharing sc8&hte §plit the shares amongst many servers.
When viewed as a peer-to-peer network, withodes anah data items, to be resistantiig2 adversarial

node removals, Publius requir@n) storage per node arfd(n) search time per query.

Alon et al. [1] give a method which safely stores a document in a decentralized storage setting where
up to half the storage devices may be faulty. The application context of their work is a storage system
consisting of a set of servers and a set of clients where each client can communicate with all the servers.
Their scheme involves distributing specially encoded pieces of the document to all the servers in the
network.

Aumann and Bende®] consider tolerance of pointer-based data structures to worse case memory
failures. They present fault tolerant variants of stacks, lists and trees. They give a fault tolerant tree with
the property that if adversarial faults occur, no more th@f(r) of the data in the tree is lost. This fault
tolerant tree is based on the use of expander graphs.

Quorum systemslp, 22, 23] are an efficient, robust way to read and write to a variable which is
shared among servers. Many of these systems are resistant up to some nibmber4 of Byzantine
faults. The key idea in such systems is to create subsets of the servergjoallethsin such a way that
any two quorums contain at leadt 2 1 servers in common. A client that wants to write to the shared
variable will broadcast the new value to all servers in some quorum. A client that wants to read the
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Figure 1: The butterfly network of supernodes.

variable will get values from all members in some quorum and will keep only that value which has the
most recent time stamp and is returned by at Ibasl servers. For quorum systems that are resistant to
O(n) faults the load on the servers can be high. In partic@én) servers will be involved in a constant
fraction of the queries.

Recently Malkhi et al.23] have introduced a probabilistic quorum system. This new system relaxes
the constraint that there must bie-21 servers shared between any two quoroms and remains resistant to
Byzantine faults only with high probability. The load on servers in the probabilistic system is less than
the load in the deterministic system. Nonetheless, for a probabilistic quorum system which is resistant
to ©(n) faults, there still will be at least one server involved in a constant fraction of the queries.

3 Ourdistributed hash table

We now state our mechanism for providing indexingnadata items byn nodes in a network that is
robust to removal of ang/2 of the nodes. We make use of a butterfly network of depth fetpglogn;

we call the nodes of the butterfly netwoskipernodegsee Figure 1). Every supernode is associated
with a set of nodes. We call a supernode at the topmost level of the butterfly a top supernode, one at the
bottommost level of the network a bottom supernode and one at neither the topmost or bottommost level
a middle supernode.

3.1 The network

To construct the network we do the following:
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Figure 2: The expander graphs between supernodes.

e We choose an error parameter- 0, and as a function af we determine constan@ B, T, D, o
andf. (SeeTheorem3.1)

e Every node chooses uniformly and independently at ranGdap supernodes; bottom supern-
odes andClogn middle supernodes to which it will belong.

e Between two sets of nodes associated with two supernodes connected in the butterfly network, we
choose a random constant degree expander graph of dedsseFigure2). (We do this only if
both sets of nodes are of size at lea§tinn and no more tha3Cinn.)

e We also map the data items to the/logn bottom supernodes in the butterfly. Every one of the
n data items is hashed ®random bottom supernodes. (Typically, we would not hash the entire
data item but only its title, e. g., “Singing in the Rain'")

e The data item is stored in all the component nodes of all the (bottom) supernodes to which it has
been hashed; if any bottom supernode has more fifidn n data items hashed to it, it drops out
of the network.

¢ In addition, every one of the nodes chooses uniformly and independently at ranttgsupern-
odes of the butterfly and points to all component nodes of these supernodes.

lwe use the random oracle modé] for this hash function, it would have sufficed to have a weaker assumption such as
that the hash function is expansive.
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3.2 Search

To perform a search for a data item, starting from nadee do the following:
1. Take the hash of the data item and interpret it as a sequence of indiges. ,ig, 0<i, <n/logn.
2. Letty,ty,...,tr be the top supernodes to whiglpoints.
3. Repeat in parallel for all values &fbetween 1 and':

(@) Lett=1.
(b) Repeat until successful or unfit> B:

i. Follow the path fronty to the supernode at the bottom level whose index is
e Transmit the query to all of the nodestin LetW be the set of all such nodes.
e Repeat until a bottom supernode is reached:

— The nodes iW transmit the query to all of their neighbors along the (unique)
butterfly path td,. This transmission is done along the expander edges connect-
ing the nodes iW to their neighbors in the supernode below. \ebe the new
set of nodes in the supernode below the\Wd

e When the bottom supernode is reached, fetch the content from whatever node has
been reached.

e The content, if found, is transmitted back along the same path as the query was
transmitted downwards.

ii. Increment.

3.3 Properties of our distributed hash table

Following is the main theorem which we will prove 8ection4.

Theorem 3.1. For all € > 0, there exist constants k€), kz(€), ks(&) which depend only oa such that
e Every node requiresike) logn memory.
e Search for a data item takes no more thafef logn time.
e Search for a data item requires no more thaiied log? n messages.

o All but en nodes can reach all buin data items.

3.4 Some comments

1. Distributed creation of our distributed hash table

We note that our distributed hash table can be created in a fully distributed fashiom bvitad-
casts or transmission of messages in total and assumidgogn) memory per node. We briefly
sketch the protocol that a particular node will follow to do this. The node first randomly chooses
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the supernodes to which it belongs. [Stie the set of supernodes which neighbors supernodes to
which the node belongs. For eagh S, the node chooses a $¢fof D random numbers between

1 andBCInn. The node then broadcasts a message to all other nodes which contains the identifiers
of the supernodes to which the node belongs.

Next, the node will receive messages from all other nodes giving the supernodes to which they
belong. For everg € S, the node will link to thé-th node that belongs ®from which it receives
a message if and only ife Ns.

If for some supernode to which the node belongs, the node receives lesghamor greater than

BCInn messages from other nodes in that supernode, the node removes all out-going connections
associated with that supernode. Similarly, if for some superno8gtive node receives less than
oClInn or greater tharBCInn messages from other nodes in that supernode, the node removes
all out-going connections to that neighboring supernode. Connections to the top supernodes and
storage of data items can be handled in a similar manner.

. Insertion of a new data item

One can insert a new data item simply by performing a search, and sending the data item along
with the search. The data item will be stored at the nodes of the bottommost supernodes in the
search. We remark that such an insertion may fail with some small constant probability.

. Insertion of a new node

Our network does not have an explicit mechanism for node insertion. It does seem that one could
insert the node by having the node choose at random appropriate supernodes and then forging
the required random connections with the nodes that belong to neighboring supernodes. The
technical difficulty with proving results about this insertion process is that not all live nodes in
these neighboring supernodes may be reachable and thus the probability distributions become
skewed.

We note though that a new node can simply copy the links to top supernodes of some other node
already in the network and will thus very likely be able to access almost all of the data items.
This insertion take®(logn) time. Of course the new node will not increase the resiliency of
the network if it inserts itself in this way. We assume that a full reorganization of the network is
scheduled whenever sufficiently many new nodes have been added in this way.

. Load balancing properties

Because the data items are searched for along a path from a random top supernode to the bottom
supernodes containing the item, and because these bottom supernodes are chosen at random, the
load will be well-balanced as long as the number of requests for different data items is itself
balanced. This follows because a uniform distribution on the search for data items translates to a
uniform distribution on top to bottom paths through the butterfly.

. Reducing storage costs

The scheme described stores each data ite®(lagn) nodes, resulting a®(logn) blowup of
space for storing the data items. We note that, in practice, it is possible to reduce the space required
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NodesO | NodesO A 4

Supernode Supernode Supernode

Figure 3: Traversal of a path through the butterfly.

for the data items by using erasure codes. In particular, instead of storing a copy of the data item
at each of theéd(logn) nodes, we would just store an encoded piece of the data item with rate
determined by our desired degree of fault tolerance. This would result in only a constant-factor
blowup in storage without any loss in other performance measures. Any standard erasure code,
such as tornado code2]], can be used to achieve this reduction. We note that even with this
change, each node will still requi@(logn) memory to store pointers to other nodes.

4 Proofs

4.1 Proof overview

Technically, the proof makes extensive use of random constructions and the probabilistic rApthod [

We first consider the supernodes create8eation3.1 In Sectionst.4and4.5 we show that with
high probability, all but an arbitrarily small constant time&ogn of the supernodes are good, where
good means that (a) they ha@logn) nodes associated with them, and, (b) they ha@ylmgn) live
nodes after adversarial deletion. This implies that all but a small constant fraction of the paths through
the butterfly contain only good supernodes.

We now consider the search protocol describeBéntion3.2 Search is preformed by broadcasting
the search to all the nodes in (a constant number of) top supernodes, followed by a sequence of broadcasts
between every successive pair of supernodes along the paths between one of these top supernodes and
a constant number of bottom supernodes. Fix one such path. The broadcast between two successive
supernodes along the path makes use of the expander graph connecting these two supernodes. When we
broadcast from the live nodes in a supernode to the following supernode, the nodes that we reach may
be both live and dead (s&égure4.1).

We now sketch the proof, given in Sectioh$ and4.7, that the search algorithm works correctly.
Assume that we broadcast along a path, all of whose supernodes are good. One problem is that we are
not guaranteed to reach all the live nodes in the next supernode along the path. Instead, we reduce our
requirements to ensure that at every stage, we reach abdlkagt live nodes, for some constaéit The
crucial observation is that if we broadcast frétogn live nodes in one supernode, we are guaranteed
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to reach at leasd logn live nodes in the subsequent supernode, with high probability. This follows by
using the expansion properties of the bipartite expander connection between two successive supernodes.
Recall that the nodes are connected to a constant number of random top supernodes, and that the
data items are stored in a constant number of random bottom supernodes. The fact that we can broadcast
along all but an arbitrarily small fraction of the paths in the butterfly implies that most of the nodes can
reach most of the content.
In several statements of the lemmata and theorems in this section, we requiretiteabhumber of
nodes in the network, be sufficiently large to get our result. We note that, technically, this requirement
is not necessary since if it fails theris a constant and our claims trivially hold.

4.2 Definitions

Definition 4.1. A top or middle supernode is said to e, 3)-good if it has at mosf3logn nodes
mapped to it and at leastlogn nodes which are not under control of the adversary.

Definition 4.2. A bottom supernode is said to loe, )-good if it has at mosp logn nodes mapped to
it and at leastxlogn nodes which are not under control of the adversary and if there are no more than
pBBInn data items that map to the node.

Definition 4.3. An (a, )-good path is a path through the butterfly network from a top supernode to a
bottom supernode all of whose supernodeq erg8)-good supernodes.

Definition 4.4. A top supernode is callef, «, B)-expansive if there exigtn/logn (¢, )-good paths
that start at this supernode.

4.3 Technical lemmata

Following are three technical lemmata about bipartite expanders that we will use in our proofs. The
proof of the first lemma is well knowrB[)] (see also 26]) and the proof of the next two lemmata are
slight variants on the proof of the first.

Lemma 4.5. Let/,r,¢',r' ,d, and n be any positive values whefe< ¢, r’ <r, and

r le re
d> (f’ln (g,> +r'In (7) +2Inn>

Let G be a random bipartite multigraph with left side L and right side R whgre- ¢, |R| =r, and each
node in L has edges to d random neighbors in R. Then with probability atleagyn?, any subset of
L of size/’ shares an edge with any subset of R of size r

Proof. We will use the probabilistic method to show this. We will first fix a ket L of size/’ and a
setR c Rof sizer’ and compute the probability that there is no edge betiéamdR' and will then
bound the probability of this bad event for any suchls@ndR. The probability that a single edge does
not fall in R is 1—r’/r so the probability that no edge from falls into R is no more than&'#d/",
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The number of ways to choose a $étof the appropriate size is no more theﬁe/f’)” and the
number of ways to choose a $&tof the appropriate size is no more thare/r’)". So the probability
that no two subsets of size/’ andR of sizer’ have no edge between them is no more than:

e\ /revr _'d
1 '(7) e

Below we solve for appropriate such that this probability is less thayiri.

() () et < w @

— /I (?’) +r'In (r?e) _ r/f/d < —2Inn (4.2)

— # <€’In (i?) +r'In (rT?) +2Inn> < d 4.3)

We get step4.2) from step 4.1) in the above by taking the logarithm of both sides. O

Lemma 4.6. Let/,r,/',r’,d,A and n be any positive values wheffe< 7, ' <r,0< A <1and

2r le re
> / — / p— .
d rlf/(l A,)Z <£|n<€l>+r|n<r/>+2|nn>

Let G be a random bipartite multigraph with left side L and right side R wkiere- ¢ and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability atlleatn?, for any
set ! c Lwhere|l’| = ¢, there is no set RC R, whereR| = r’ such that all nodes in’RBhare less than
A¢'d/r edges with L

Proof. We will use the probabilistic method to show this. We will first fix a ketC L of size/’ and

a setR C R of sizer’ and compute the probability that all nodesRhshare less thaa¢'d/r edges

with L’. If this bad event occurs then the total number of edges shared betvaerdR must be less

thanAr’Z’d/r. Let X be a random variable giving the number of edges shared betwWesdR. The

probability that a single edge frohf falls in R isr’/r so by linearity of expectation,(&X) =r"¢'d/r.
We can then say that:

Ar'e'd

PF(X < ) =Pr(X < (1-08)E(X)) < g E(X)8%/2 :

whered = 1— A and the last equation follows by Chernoff bounds £#Q. < 1.

The number of ways to choose a $étof the appropriate size is no more the(fe/ﬁ’)" and the
number of ways to choose a $&tof the appropriate size is no more th@re/r’)". So the probability
that no two subsets’ of size/’ andR’ of sizer’ have this bad event occur is

U
e\’ /reyr 1'ds?
)Gy
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Below we solve for appropriate such that this probability is less thagire.

4 ! 190452
(%) () e < ue

. [le rey r'dés?
<— €In<£,>+rl (7)_ o < =2Inn
2r ,
< .
<— r’E’(l—?L)2<£|n< >+rln( )+2Inn> < d

We get step4.5 from step 4.4) in the above by taking the logarithm of both sides.

Lemma 4.7. Let/, ¢ r,r',d, B, and n be any positive values whefe< 7, B’ > 1 and

a>——— ’E(,B’ 1)2 <r In( )+2Inn) .

(4.4)
(4.5)

(4.6)

Let G be a random bipartite multigraph with left side L and right side R wkiere- ¢ and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability aflleaktn?, there is

no set RC R, wherdR| =r’, such that all nodes in’mave degree greater thgi/d/r.

Proof. We will again use the probabilistic method to show this. We will first fix aRet R of sizer’
and compute the probability that all nodesrhave degree greater th8f¢d/r. If this bad event occurs
then the total number of edges shared betweandR must be at leas8’r’¢d/r. Let X be a random
variable giving the number of edges shared betweandR'. The probability that a single edge frdm

fallsin R isr’/r so by linearity of expectation,(K) =r'¢d/r.
We can then say that:

/!
Pr(X > P rrgd) — Pr(X > (14 8)E(X)) < e EX)8*/4

whered = 8’ — 1 and the last equation follows by Chernoff bounds & B’ < 2e— 1.

The number of ways to choose a $&tof the appropriate size is no more thare/r’)".

probability that no subsd® of sizer’ has this bad event occur is

re\r _ rras?
=) e & .
( r’ )

Below we solve for appropriateé such that this probability is less thagr.

reyr 1’ (ds?
(—) e W < 1n?
r/

= r,|n<rrfa>_r’£fr§2 < —2Inn
<— W}L}r_)oln( )+2Inn) < d.

We get step4.8) from step 4.7) in the above by taking the logarithm of both sides.
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4.4 (a,pB)-good supernodes

Lemma 4.8. Let a, 6’,n be values where: < 1/2 and§’ > 0 and let K&’, &) be a value that depends
only one, 6’ and assume n is sufficiently large. Let each node participatédh &) Inn random middle
supernodes. Then removing any set & nodes still leaves all bui'n/Inn middle supernodes with at
leastak(8’, o) Inn live nodes.

Proof. For simplicity, we will assume there aremiddle supernodes (we can throw out any excess
supernodes).

Let{=n,¢ =n/2,r=n,1r'"=§n/Inn, L =20 andd = k(&’,a)Inn in Lemma4.6. We want
probability less than An? of being able to remova/2 nodes and having a set 8fn/Inn supernodes
all with less thark(d’, ) Inn live nodes. This happens provided that the number of connections from
each supernode is bounded as@mma4.6:

k(6',a)Inn > &n(éiliga)z <n|n22e) +|b;:-ln (Ir(;/n) +2Inn) (4.10)

_ 26'/'2(12_8)2';';; +o(1) (4.11)

= k(6',at) > Em+o(l) . (4.12)
O

Lemma 4.9. Let 3, 6’,n,k be values such thg > 1, 6’ > 0 and assume n is sufficiently large. Let each
node participate in knn of the middle supernodes, chosen uniformly at random. Then ad’bjtnn
middle supernodes have less thkinn participating nodes with probability at leagt—1/n,

Proof. For simplicity, we will assume there aremiddle supernodes (we can throw out any excess
supernodes and the lemma will still hold). Let=n, r =n, r’ = 8'n/Inn, d =klnnandf’ = g in
Lemmad4.7. Then the statement in this lemma holds provided that:

4Inn o'n Inn
> _— _— .
kinn > SN —172 <Inn In<6/>+2lnn> (4.13)
4 Inn 2
> . e :
= k > (B—1)2inn In(5, +5’n> (4.14)
The right hand side of this equation goes to hi@wes to infinity. O

Lemma 4.10. Leta, 8',n be values such that < 1/2, §' > 0 and let K&', &) be a value that depends
only oné’ and o and assume n is sufficiently large. Let each node participat¢dh &) top (bottom)
supernodes. Then removing any set A2 nodes still leaves all bué’n/Inn top (bottom) supernodes
with at leastak(d’, @) Inn live nodes.

Proof. Let/=n,¢ =n/2,r =n/Inn,r" = é'n/Inn, A = 2 andd = k(8’, ¢) in Lemma4.6. We want
probability less than in? of being able to remove/2 nodes and having a set&/ Inn supernodes all
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with less thamxk(d’, ) Inn live nodes. We get this provided that the number of connections from each
supernode is bounded asliemma4.6:

, 4 nin(2e) d'n ,
k(6',at) > Sn(i—2a)? ( 5 +m-ln(1/5 )+2Inn> (4.15)
_ 2In(2¢)
= Si_2a7 +0(1) . (4.16)

O]

Lemma 4.11. Let 3, 6’,n,k be values such thdk > 1, 6’ > 0 and n is sufficiently large. Let each node
participate in k of the top (bottom) supernodes (chosen uniformly at random). Then &l n top
(bottom) supernodes consist of less tifiinn nodes with probability at leagt— 1/n?.

Proof. Let/ =n,r=n/Inn,r" = §'n/Inn,d =kandB’ = B in Lemma4.7. Then the statement in this
lemma holds provided that:

4 o'n e
> —_ —_ .
k > 6’n([3—1)2<lnn |n(5,)+2|nn> (4.17)
4 e 2Inn
~ Inn(g-1)2 <In (5) o ) ' (4.18)
The right hand side of this equation goes to hi@wes to infinity. O

Corollary 4.12. Let 3,6’,n,k be values such that > 1, §' > 0 and n is sufficiently large. Let each
data item be stored in k of the bottom supernodes (chosen uniformly at random). Thendaii/don
bottom supernodes have less thkinn data items stored on them with probability at least 1/n?.

Proof. Let the data items be the left side of a bipartite graph and the bottom supernodes be the right
side. The proof is then the samelasmma4.11 O

Corollary 4.13. Letd’ >0, <1/2, B > 1. Let K ', o), be a value depending only @ and assume
n is sufficiently large. Let each node appear i@k o) top supernodes,(k’, &) bottom supernodes
and K ¢', o) Inn middle supernodes. Then all kit of the supernodes aterk(d’, @), Bk(d’, @))-good
with probability1 — O(1/n?).

Proof. Use

10 2In(2e¢)

T3 §(1-2a)2

in Lemma4.10 Then we know that no more thard®/(101Inn) top supernodes and no more than
36'n/(101Inn) bottom supernodes have less thk(d’, @) Inn live nodes. Next plugging(d’, o) into
Lemma4.8 gives that no more thand3n/(10Inn) middle supernodes have less thak(é’, o) Inn live
nodes.

Next usingk(d’, &) in Lemma4.11 and Lemma4.9 gives that no more thaé’n/(20Inn) of the
supernodes can have more thak(d’, &) Inn nodes in them. Finally, using(d’, o) in Lemma4.12
gives that no more thaé'n/(20Inn) of the bottom supernodes can have more tB&(¥’, t) Inn data
items stored at them. If we put these results together, we get that no morérthiam supernodes are
not (ak(d8', @), Bk(&', a))-good with probability 1- O(1/n?). O

K(&', o)
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4.5 (v7,a,pB)-expansive supernodes

Theorem 4.14.Letd >0, ¢ < 1/2,0<y< 1, B >1 LetkJ,a,y) be a value depending only
on d,a,y and assume n is sufficiently large. Let each node participatd dndk v) top supernodes,
k(3, e, y) bottom supernodes and& c, y) Inn middle supernodes. Then all bt/ Inn top supernodes
are (y, ak(8,a), Bk(8, a))-expansive with probabilitg — O(1/n?).

Proof. Assume that for some particuld(d, a,y) that more thandn/Inn top supernodes are not
(v,0k(0,a,7), Bk(d,a,y)-expansive. Then each of these bad top supernodeglhasyn)/Inn
paths that are notak(d,a,y),Bk(d,a,y))-good. So the total number of paths that are not
(ak(o,a,y),Bk(S,a,y))-good is more than

5(1—y)n?
In?n
We will show there is &(9J, «,y) such that this event will not occur with high probability. Let
0'=06(1—1y)andlet
10 2In(2e)
3 61-yp(1-2a)2
Then we know by emmad4.13that with high probability, there are no more th&f1 — y)n/Inn supern-
odes that are nqxk(9, o, y), Bk(6, &, v))-good. We also know that each of these supernodes which are
not good cause at mosf Inn paths in the butterfly to be nétrk(8, o, y), Bk(J, @, v))-good. Hence the

number of paths that are nok(8, o, 7), Bk(8, &, 7))-good is no more thad (1 — y)n?/(In?n) which
is what we wanted to show. O

k(d,a,y) =

4.6 (a,B)-good paths to data items

We will use the following lemma to show that almost all the nodes are connected to some appropriately
expansive top supernode.

Lemma4.15.Letd > 0, € > 0and n be sufficiently large. Then exists a constdft k) depending only
one andé such that if each node connects {@ke) random top supernodes then with high probability,
any subset of the top supernodes of ¢$ize 6)n/Inn can be reached by at least — €)n nodes.

Proof. We imagine then nodes as the left side of a bipartite graph andrthien top supernodes as the
right side and an edge between a node and a top supernode in this graph if and only if the node and
supernode are connected.

For the statement in the lemma to be false, there must be somessenodles on the left side of the
graph and some set 01 — §)n/Inn top supernodes on the right side of the graph that share no edge.
We can findk(8, €) large enough that this event occurs with probability no more thiaA iy plugging
in¢=n, ¢ =en,r=n/Innandr’ = (1—6)(n/Inn) into Lemma4.5. The bound found is:

1 ey (1-9)n e
k(o,e) > (1—6)en<8n'|n <§)+ inn -In<(1_6)>+2Inn> (4.19)
_ Tg) +o(l) . (4.20)
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d

We will use the following lemma to show that if we can regchottom supernodes that have some
live nodes in them that we can reach most of the data items.

Lemma 4.16. Let y,n, e be any positive values such that- 0, y > 0. There exists a(€,y) which
depends only os,y such that if each bottom supernode holds, k) Inn random data items, then any
subset of bottom supernodes of giméInn holds(1— €)n unique data items.

Proof. We visualize the data items as the left side of a bipartite graph andahfie n bottom supernodes

as the right side of this graph. There is an edge between a data item and a bottom supernode if and only
if the bottom supernode contains that data item. The bad event is that there is somersdnaf
supernodes on the right that share no edge with some st déta items on the right. We will find

k(e,y) large enough that this event occurs with probability no more thai. We do this by plugging
in¢=n, ¢ =en,r=n/Inn, andr’ = yn/Inninto Lemma4.5.

We get:
k(g,y)Inn > Inn<yn‘IneJrasn-IneJFZInn) (4.21)
eym\Inn vy £
—  Key > $-|n§+o(1). (4.22)

4.7 Connections betweefic, )-good supernodes

Lemma 4.17. Let o, B, &’,n be any positive values wheté < «, a > 0 and let C be the number of
supernodes to which each node connects. Let X and Y be two supernodes that &ehth)-good.
Let each node in X have edges takp, ') random nodes in Y wherd, 3, a’) is a value depending
only ona, 8 and o’. Then with probability at least — 1/n?, any set ofr’CInn nodes in X has at least
o/Clnn live neighbors in Y .

Proof. Consider the event where there is some seat/'€flnn nodes inX which do not havex'Clnn

live neighbors inY. There areaClnn live nodes inY so for this event to happen, there must be some
set of (o — &/)CInn live nodes inY that share no edge with some setodfiinn nodes inX. We note
that the probability that there are two such sets which share no edge is largesXvarehy have
the most possible nodes. Hence we will finé(a, 3, a’) large enough to make this bad event occur
with probability less than in? if in Lemma4.5 we set¢ = BCInn, r = BCInn, ¢/ = o/CInn, and

r' = (a— a’)CInn. When we do this, we get th&fa, 3, ') must be greater than or equal to:

(@am) (“n(@) re-n(3Z) wo)
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4.8 Putting it all together

We are now ready to give the proof ®heorem3.1

Proof. Let 6,,v,a’, be any values such that96 <1, 0<a <1/2,0< o' <a, B >1and
O<y<1l. Let

10 2In(2¢e) _In(¥) 1 /e
C_E‘s(l—y)(l—Za)Z’ 1-6° ( )

o~ () (0 (25 e (25)3)

Let each node connect @top, C bottom andC middle supernodes. Then Bjeorend.14 at least
(1—9)n/Inn top supernodes are, aC, BC)-expansive. Let each node connecfltdop supernodes.
Then byLemma4.15 at leas{1— €)n nodes can connect to sorfie aC, fC)-expansive top supernode.
Let each data item map #® bottom supernodes. Then lhemma4.16 at least(1 — £)n nodes have
(aC, BC)-good paths to at leasél — £)n data items.

Finally, let each node in a middle supernode hBveandom connections to nodes in neighboring
supernodes in the butterfly network. Thenlbymma4.17, at least(1— €)n nodes can broadcast to
enough bottom supernodes so that they can reach at least)n data items.

Each node requirek links to connect to the top supernodeB) hks for each of theC top supern-
odes it plays a role in; 2 links for each of theClnn middle supernodes it plays a role in aBInn
storage for each of th€ bottom supernodes it plays a role in. The total amount of memory required is
thus

and

T+2DC+CInn(2D+BB) ,

which is less thatk (¢) logn for somek; (¢) dependent only oa.
Our search algorithm will find paths to at md&bottom supernodes for a given data item and each
of these paths has less than tdgops in it so the search time is no more than

ko(€)logn=Blogn .

Each supernode contains no more tB&tn nodes and in each search, exadlyop supernodes
send no more thaB messages so the total number of messages transmitted during a search is no more
than
ks(g)log?n = (TBBC)log?n .

5 Modifications for spam resistant distributed hash table
We now describe the changes in the network necessary for the spam resistant distributed hash table. We

only sketch the required proofs since the arguments are based on slight modifications to the proofs of
Sectiord.
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The first modification is that rather than have a constant degree expander between two supernodes
connected in the butterfly, we will have a full bipartite graph between the nodes of these two supernodes.
Since we have insisted that the total number of adversary controlled nodes be strictly les&thae
can guarantee that a-1¢ fraction of the paths in the butterfly have all supernodes with a majority of
good (non-adversary controlled) nodes. In particular, by substituting appropriate valLesiina4.6
andLemma4.7we can guarantee that all bert/ logn of the supernodes have a majority of good nodes.

This then implies that no more than ariraction of the paths pass through such “adversary-majority”
supernodes. As before, this implies that most of the nodes can access most of the content through paths
that don't contain any “adversary-majority” supernodes.

For a search in the new network, the paths in the butterfly network along which the search request
and data item will be sent are chosen exactly as in the original construction. However, we modify the
protocol so that in the downward flow, every node passes down a request only if the majority of requests
it received from nodes above it are the same. This means that if there are no “adversary-majority”
supernodes on the path, then all good nodes will take a majority value from a set in which good nodes
are a majority. Thus, along such a path, only the correct request will be passed downwards by good
nodes. After the bottommost supernodes are reached, the data content flows back along the same links
as the search went down. Along this return flow, every node passes up a data value only if a majority
of the values it received from the nodes below it are the same. This again ensures that along any path
where there are no “adversary-majority” supernodes, only the correct data value will be passed upwards
by good nodes. At the top, the node that issued the search takes the majority value amo@gkigine)(
values it receives as the final search result.

To summarize, the main theorem for spam resistant distributed hash tables is as follows:

Theorem 5.1. For any constant & 1/2 such that the adversary controls no more than cn nodes, and
for all € > 0, there exist constants {€), kx(¢), ks(€) which depend only oa such that:

e Every node requiresike) log®n memory.

e Search for a data item takes no more thaiiellogn time. (This is under the assumption that
network latency overwhelms processing time for one message, otherwise the tiflogfn0)

e Search for a data item requires no more thafed log®>n messages.

e All but en nodes can search successfully for all batof the true data items.

6 Discussion and open problems

We conclude with some open issues:

1. Can one improve on the construction for the spam resistant distributed hash table described in this
paper?

2. Can one deal efficiently with more general Byzantine faults that occur all at once? For example,
the adversary could use nodes under his control to flood the network with irrelevant searches, this
is not dealt with by either of our solutions.
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3. We conjecture that our network has the property that it is poly-log competitive with any fixed

degree network. |. e., we conjecture that given any fixed degree network topology, miteares

are distributed amongstnodes, and any set of access requests that can be dealt with fixed sized
buffers, then our network will also deal with the same set of requests by introducing no more than
a polylog slowdown.
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