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Abstract: For an integerh≥ 1, anelementary h-route flowis a flow alongh edge disjoint
paths between a source and a sink, each path carrying a unit of flow, and a single commodity
h-route flowis a non-negative linear combination of elementaryh-route flows. An instance
of asingle source multicommodity flow problemfor a graphG= (V,E) consists of a source
vertexs∈ V andk sinkst1, . . . , tk ∈ V corresponding tok commodities; we denote itI =
(s; t1, . . . , tk). In thesingle source multicommodity multiroute flow problem, we are given
an instanceI = (s; t1, . . . , tk) and an integerh ≥ 1, and the objective is to maximize the
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total amount of flow that is transferred from the source to the sinks so that the capacity
constraints are obeyed and, moreover, the flow of each commodity is anh-route flow.

We study the relation between classical and multiroute single source flows on undi-
rected networks with uniform capacities and we provide a tight bound. In particular, we
prove the following result. Given an instanceI = (s; t1, . . . , tk) such that eachs− ti pair is
h-connected, the maximum classical flow betweens and theti is at most(2−2/h)-times
larger than the maximumh-route flow betweens and theti and this is the best possible
bound forh ≥ 2. This, as we show, is in contrast to the situation of general multicom-
modity (i. e., multiple sources or non-uniform capacities) multiroute flows that are up to
k(1−1/h)-times smaller than their classical counterparts.

Furthermore, we introduce and investigateduplex flowsdefined so that the capacity con-
straints on edges are applied independently for each direction. We show that for networks
with uniform capacities and for instances as above the maximum classical flow betweens
and theti is the same as the maximumh-route duplex flow betweens and theti . Moreover,
the total flow on each edge in the duplex flow can be restricted to(2−2/h)C, whereC is
the capacity of each edge.

As a corollary, we establish a max-flow min-cut theorem for the single source multi-
commodity multiroute flow and cut. Anh-disconnecting cutfor I is a set of edgesF ⊆ E
such that for eachi, the maximumh-route flow betweens andti is zero. We show that the
maximumh-route flow is within 2h−2 of the minimumh-disconnecting cut, independently
of the number of commodities; we also describe a(2h−2)-approximation algorithm for the
minimumh-disconnecting cut problem.

1 Flows, multiroute flows and cuts

A classical flow is (roughly) a non-negative linear combination of unit flows along paths (cf. [2]). Clas-
sical flow theory is not much interested in the number of the paths or in interactions among them. It is
plausible, for example, that there is an edge in the network that is used by every path of a given flow;
a failure of this single edge results in a loss of the entire flow. This property of the classical flow is
undesirable in some applications and motivated the definition of a multiroute flow. For a given integer
h≥ 1, themultiroute flow(or anh-route flow) is a flow that is decomposable into a non-negative linear
combination of elementaryh-route flows where anelementary h-route flowis a flow alongh edge dis-
joint paths between the source and the sink, each path carrying a unit of flow [21]. Closely related to this
is the concept ofh-balanced flows. A flow of sizeM between two vertices ish-balancedif the flow on
every edge is at mostM/h. Clearly, everyh-route flow is anh-balanced flow; the opposite (less obvious)
claim is also true: Everyh-balanced (acyclic) flow is anh-route flow [1, 6, 21].

A necessary and sufficient condition for the existence of anh-route flow between two vertices is that
the vertices areh-connected. A corollary of the equivalence ofh-route flows andh-balanced flows is
that on uniform capacity networks with anh-connected sources and sinkt, every maximums-t-flow
is anh-route flow. However, for multicommodity flows andh-route flows, this relation is no longer
valid. We investigate the relation between flows andh-route flows for a special case of multicommodity

THEORY OFCOMPUTING, Volume 4 (2008), pp. 1–20 2

http://dx.doi.org/10.4086/toc


SINGLE SOURCEMULTIROUTE FLOWS AND CUTS

problems, namely for single source problems. An instance of asingle source multicommodity flow
problemfor a graphG= (V,E) consists of a source vertexs∈V andk sinkst1, . . . , tk ∈V corresponding
to k commodities; we denote itI = (s; t1, . . . , tk). A (single-source) multicommodity flow is anh-route
flow if the flow corresponding to each commodity is anh-route flow.

We show that for undirected networks with uniform capacities and for instancesI = (s; t1, . . . , tk)
such thats andti areh-connected, for eachi = 1, . . . ,k, the maximum classical flow betweens and the
ti is at most 2−2/h times larger than the maximumh-route flow betweens and theti ; this bound is the
best possible forh≥ 2. In particular, forh = 2 the ratio is 1, implying that by imposing the requirement
that the flow be a 2-route flow, we do not lose anything with respect to the size of the flow. Moreover, if
the uniform capacity of the edges is integral, then there always exists a half-integralh-route flow of size
at least half of the maximum classical flow.

Furthermore, we introduce and investigateduplex flowsdefined so that the capacity constraints on
edges are imposed independently for each direction, as if each undirected edge is replaced by two di-
rected edges in the opposite direction. To give an example, an edge with capacity 1 is able to carry a flow
of 1 in both direction simultaneously but it is not able to carry a flow of 1.5 in one direction even if the
other direction is not used. This is a natural model for network flows and as far as we know no specific
attention was given to it. For classical single commodity flow and single source multicommodity flow,
the sizes of the maximum non-duplex and duplex flows coincide since any classical flow can be modified
so that no edge is used in both directions. Forh-route flows this simple transformation no longer works.
Nevertheless, we show that for networks withuniformcapacities and for instancesI = (s; t1, . . . , tk) such
thats andti areh-connected, for eachi = 1, . . . ,k, the maximum classical flow betweens and theti has
the same size as the maximumh-route duplex flow betweens and theti . Moreover, the total flow on
each edge in the duplex flow can be restricted to 2−2/h. Thus, our bound for duplex flows implies the
results for non-duplex flows described in the previous paragraph (except for the half-integrality).

Our results for single source flows are in sharp contrast with the situation of general (i. e., multiple
sources or non-uniform capacities) multiroute multicommodity flows: we describe an example withk
commodities where the maximum classical flow isk(1−1/h)-times larger than the maximumh-route
flow.

The other subject of the paper is cuts forh-route flows. For the classical flow, a cut is a subset of
edges whose removal disconnects the source and the sink (or every source-sink pair, in a case of the
multicommodity flow). Analogously, we define cuts forh-route flows. A subsetF ⊆E of edges is called
anh-disconnecting cutfor an instance of the multicommodity flow if no source-sink pair ish-connected
in (V,E \F). The h-disconnecting cuts correspond to integral solutions of a dual of a natural linear
programming formulation of the multiroute flow problem (seeSection1.2). We establish a max-flow
min-cut theorem for the single source multiroute flow and the minimum disconnecting cut problems on
networks with uniform capacities. In particular, we show that the max-flow for the problem is within
2h−2 of the min-cut. As a corollary of this relation we get a(2h−2)-approximation algorithm for the
h-disconnecting cut problem.

1.1 Related results

Kishimoto and Takeuchi [22] and later Aggarwal and Orlin [1] studied single commodity multiroute
flows (cf. [6, 15, 14]). They provided the characterization ofh-route flows ash-balanced flows and also
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proved a duality of multiroute flows and multiroute cuts (for different cuts than those considered in this
paper). Multiroute flows and integral variants of multiroute flows have applications in communication
and routing problems (e. g., [4, 5, 20, 12] and references therein).

Another direction of research focuses on flows under the restriction that each commodity is allowed
to use only a limited number of paths: the edge disjoint paths problem and the unsplittable flow problem
allow one path per commodity [8, 10, 11, 19, 23, 25, 27, 26, 34]; the h-splittable flow problem allows
at mosth, not necessarily disjoint, paths per commodity [7, 24, 31, 30]; particular attention has been
given to single source unsplittable flow problems [13, 16, 25, 33]. Though there is a certain similarity
between theh-splittable flows and theh-route flows (in fact, they may even coincide for some instances),
there is also a substantial difference. Whereas theh-splittable flows may split, theh-route flows have the
obligation to split.

Relations between flows and cuts have been studied for over half a century. Menger [32] observed
that the maximum number of edge disjoint paths between a pair of vertices is equal to the size of the mini-
mum subset of edges whose removal disconnects the pair. Ford and Fulkerson [17] proved the celebrated
theorem about the duality of (single commodity) flows and cuts in networks. Though an exact duality
does not hold for multicommodity flows and cuts, there are several theorems establishing an approxi-
mate duality (with the gap of order logk) for different variants of the problem (Leighton and Rao [28],
Aumann and Rabani [3], Linial, London and Rabinovich [29], Garg, Vazirani and Yannakakis [18]).

1.2 Preliminaries

As indicated in the title, in this paper we deal with networks with uniform capacities. For simplicity
and without loss of generality we assume throughout the paper that every edge has capacity one. The
number of vertices is denotedn and the number of edgesm; we allow parallel edges. The letterk
denotes the number of commodities and the letterh the number of routes in the elementary multiroute
flow. Several times we need the characterization ofh-route flows ash-balanced flows that was first
proved by Kishimoto and Takeuchi.

Theorem 1.1 ([1, 6, 21]). A single commodity flow without cycles is h-balanced if and only if it is an
h-route flow.

For an instanceI of the multicommodity flow problem, we useFh(I) for the size of the maximumh-
route flow andFh,‖(I) for the size of the maximumh-route duplex flow for the instanceI. As mentioned
in the introduction, for single source multicommodity flow, the sizes of the maximum non-duplex and
duplex flows coincide. Thus we haveFh(I)≤ Fh,‖(I)≤ F1(I).

For a given flow, anemptyedge is an an edge unused by the flow. We will deal withminimum
cost flowsseveral times. In such cases we consider the uniform cost function (i. e.,cost(e) = 1, ∀e∈
E). Recall that a single source classical flow can be viewed as a single commodity flow problem and
therefore there exists an integral maximum flow for every instanceI; there also exists a minimum cost
maximum flow that is integral, and its cost is just the number of non-empty edges.

Consider a networkG = (V,E). Let s1, . . . ,sk bek sources andt1, . . . , tk bek sinks of a multicom-
modity flow problem; we call the sources and sinks alsoterminals. DefineQi as the set of all elementary
h-route flows betweensi andti and letQ =

⋃k
i=1Qi . As far as we know, no exact combinatorial algorithms

for computing the maximum multicommodity flow are known (not even for the 1-route flow). Thus, for
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completeness we provide a linear programming formulation of the maximumh-route flow problem (the
variable f (q) represents the size of the flow along theh-systemq, that is, a flow of sizef (q)/h along
each of theh paths ofq):

max ∑
q∈Q

f (q) (1.1)

∑
q∈Q:e∈q

f (q)/h ≤ 1 ∀e∈ E

f (q) ≥ 0 ∀q∈ Q .

The dual program corresponds to the fractional relaxation of the the minimumh-disconnecting cut prob-
lem:

min h· ∑
e∈E

x(e) (1.2)

∑
e∈q

x(e) ≥ 1 ∀q∈ Q

x(e) ≥ 0 ∀e∈ E .

By setting integrality constraints on the variablesx, we get an integer linear programming formulation
of the minimumh-disconnecting cut problem.

2 Relating flows and multiroute flows

In this section, we show thath-route flows are not much smaller than classical flows under certain
assumptions: single source, uniform capacity, and connectivity. We prove the following theorems for
non-duplex and duplex flows, respectively.

Theorem 2.1. Let G= (V,E) be an undirected graph and letI = (s; t1, . . . , tk) be an instance of the
single source multicommodity flow problem such that for each i, s and ti are h-connected for a given
h≥ 2. Then

F1(I) ≤ (2−2/h) ·Fh(I) . (2.1)

There also exists a half-integral h-route flow of size at leastF1(I)/2.

Theorem 2.2. Let G= (V,E) be an undirected graph and letI = (s; t1, . . . , tk) be an instance of the
single source multicommodity flow problem such that for each i, s and ti are h-connected for a given
h≥ 2. Then, for the duplex flows,

Fh,‖(I) = F1(I) ,

and moreover the equality can be achieved by a duplex flow with a total flow on each edge of at most
2−2/h.
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Note thatTheorem2.2 impliesTheorem2.1, with the exception of the half-integrality: we can use
the duplex flow scaled down so that we multiply a flow along each edge by a factor of 1/(2− 2/h).
Nevertheless, we give also a direct proof ofTheorem2.1. One consequence of this proof is that in case
of h = 2, even the sharper bound can be achieved by a half-integral flow. Since forh = 2 the factor is
2−2/h= 1, and a trivial boundFh(I)≤ F1(I) holds for everyh, we have the following corollary which
shows that by imposing the requirement that the flow be a 2-route flow, we do not lose anything with
respect to the size of the flow.

Corollary 2.3. Let G= (V,E) be an undirected graph and letI = (s; t1, . . . , tk) be an instance of the
single source multicommodity flow problem such that for each i, s and ti are2-connected. Then

F1(I) = F2(I) .

In addition, the equality can be achieved by a half-integral2-route flow.

Before proving the upper bounds, we first show, inSection2.1, that forh-route flows with a single
source, the factor of 2−2/h is the best possible and also that the assumptions of single source and unit
capacity are essential. Then, inSection2.2we develop the common parts of the upper bound proofs and
finally in Sections2.3and2.4we show the upper bounds for non-duplex and duplex flows, respectively.

2.1 Lower bounds

Theorem 2.4. For every pair of integers h,k ≥ 2 there exist an undirected graph G and an instance
I = (s; t1, . . . , tk) of the single source multicommodity flow problem such that for each i, s and ti are
h-edge-connected, and, at the same time,

F1(I)≥
(

2− 2
h

)
·Fh(I) .

Proof. The set of vertices of the graphG consists ofk+2 distinct verticess,v, t1, . . . , tk. The set of edges
containsh−1 parallel edges betweens andti , and an edge betweenti andv, for i = 1, . . . ,k (Figure1).

Consider the instanceI = (s; t1, . . . , tk). An elementaryh-route flow betweensandti , for i = 1, . . . ,k,

...
s v

t1

t2

t3

tk

Figure 1: The graphG for the lower bound

has to use two edges from the setF =
{
{t jv} : j = 1, . . .k

}
. Thus, the totalh-route flow for the instance

I is upper bounded byh · |F |/2, that is,Fh(I)≤ hk/2. On the other hand,F1(I) = k(h−1). This yields
the desired bound.
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The situation is completely different for general multicommodityh-route flows. Even though the
maximum 2-route flow is as large as the maximum 1-route flow for single source multicommodity in-
stances, for general instances the ratio between the sizes of a maximum 1-route flow and a maximum
2-route flow is as large ask/2. On the other hand, a trivial upper bound on the ratio isF1(I)≤ kFh(I).

Theorem 2.5. For every pair of integers h,k ≥ 2 there exists a graph G= (V,E) and an instanceI =
(s1, . . . ,sk; t1, . . . , tk) of the multicommodity flow problem such that for each i, the vertices si and ti are
h-connected, and, at the same time,

F1(I)≥ k

(
1− 1

h

)
Fh(I) .

Proof. Let G be a graph onk+1 distinct verticesv1, . . . ,vk+1 with vi connected byh−1 parallel edges
with vi+1, for i = 1, . . . ,k, andvk+1 connected by an edgee with v1 (Figure2). Consider an instanceI
with si = vi andti = vi+1, for i = 1, . . . ,k. Then,F1(I) = k(h−1). On the other hand,Fh(I) ≤ h, since

e

s1

s2 = t1

s3 = t2

s4 = t3

sk = t4

tk

Figure 2: The graphG for h = 4 andk = 5

an elementaryh-route flow betweensi andti has to use the edgee= {vk+1,v1}, for everyi = 1, . . . ,k.
This yields the desired bound.

Theorem2.1 relies on the assumption that the network has uniform edge capacities. The next theo-
rem shows that without this assumption, the result does not hold.

Theorem 2.6. For every C≥ 1 and every integer h≥ 1, there exists an undirected network G= (V,E)
with maximum edge capacity C and an instanceI = (s; t1, . . . , tk) of the single source multicommodity
flow problem such that for each i,F1(s, ti) = Fh(s, ti), and, at the same time,

F1(I) ≥
(

C−C−1
h

)
·Fh(I) .

Proof. Choosek= d(C(h−1)+1)/he and consider a networkGwith k+2 verticesV = {s,u, t1, t2, . . . tk}
connected in the following way:s is connected withu by h edges,h−1 of them with capacityC and
one with capacity 1, and for eachi ∈ {1, . . . ,k}, u andti are connected byh edges, each of capacity 1
(Figure3). Then, for an instanceI = (s; t1, . . . , tk) we haveF1(I) = C(h−1)+1 yetFh(I) = h.
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...
u

s

t1

t2

tk

Figure 3: A bad network for nonuniform single sourceh-route flows (forh = 5).

2.2 Upper bounds: Preliminaries

In this section we cover three steps of the proof that are common for both non-duplex and duplex flows.
The first step is essentially an induction: We restrict ourselves to instances with several useful proper-
ties, using the fact that any potential minimal counterexample has these properties. Second, on these
instances, we choose some suitable maximal classical flow. Third, based on this flow, we define certain
auxiliary structures on the empty edges. In the last step of the proof, which is done in the next subsec-
tions separately for non-duplex and duplex flows, we use these empty edges to reroute some flow and
obtain anh-route flow of the appropriate size.

The following lemma shows that it is sufficient to prove Theorems2.1 and 2.2 only for graphs
G = (V,E) and instancesI = (s; t1, . . . , tk) satisfying the following three properties:

A1 For each commodityi, the only minimums− ti cut is the cut{ti} (we call it atrivial cut).

A2 In every integral maximum flow for the instanceI, each empty edge is incident to at least one of
the sinksti , and, moreover, if an empty edge is incident to exactly one sink, then the degree of the
sink is exactlyh.

A3 Omitting any of the sinks from the instanceI results in a decrease of the maximum flow (i. e., for
everyi, if we denote byI−i the instanceI without the sinkti , F1(I−i) < F1(I)).

Lemma 2.7. Let G andI be a graph and an instance that represent a conterexample toTheorem2.1
or Theorem2.2 with minimal m+ k (the number of edges plus the number of commodities). Then the
Properties A1-A3 hold.

Proof. Suppose we have a graphG and an instanceI that do not satisfy the Properties A1-A3. We
construct a smaller graphG′ and an instanceI′ such that the classical maximum flow is the same in both
cases and the maximal size of any type ofh-route flow considered in the theorems can only decrease.
Thus ifGandI violate any claim in the theorems, then alsoG′ andI′ violate it and the proof is completed.

A1. Assume that there exists a commodityi and a minimum cutC for the commodity that is not
trivial. Let δ j denote the connectivity ofs and t j and let us denote byF an integral minimum cost
maximum flow forI. If the only commodity in the flowF that uses edges in the cutC is the commodity
i, we perform the following modification ofG: the ti-side ofG is merged into a single vertext, that is,
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keep every edge on thes-side, remove every edge on theti-side and for every edge{u,v} ∈ C with v
on theti-side, replace{u,v} by a new edge{u, t}. We get a graphG′ that is smaller thanG and for an
instanceI′ = (s; t1, . . . ti−1, t, ti+1, . . . , tk) on G′, the connectivity ofs andt j is δ j for j ∈ {1, . . . ,k}, j 6= i,
and the connectivity ofs andt is δi , and the (classical) maximum flows forI in G and forI′ in G′ have
the same size. The graphG′ is smaller thanG yet F1(I) = F1(I′) (note that multi-edges may occur).
Any h-balanced flow forI′ in G′ can be easily extended into anh-balanced flow of the same size for the
instanceI in G.

If there are also some other commodities that use the cutC in the flow F, we redirect the part of
their flow going throughC to ti . This is possible since the cut is minimal and there will be no other
commodities interfering. This way we maintain the same amount of the total flow and we argue as
before.

A2. From now on we assume that for every commodity, every minimum cut is the trivial one. We
denote byF an integral minimum cost maximum flow forI that does not satisfy the Property A2. Recall
that the cost is uniform, i. e., the cost of an integral flow is just the number of edges used.

Assume first that there exists an edgee that is empty inF and that is not incident to any of the sinks
ti . Sincee is not incident to any terminal node and since for everyi each minimums− ti cut is the
trivial one, removinge from the graphG does not decrease the connectivity of any commodity and the
maximum flow for the instanceI. As in the previous proof, anh-balanced flow for the smaller graph can
be interpreted as a solution forG.

Similarly, if there exists an edgee that is empty inF and that is incident to exactly one sink and the
degree of the sink is higher thanh, deletion ofe does not decrease the connectivity of any commodity
belowh and it does not decrease the maximum flow for the instanceI. Again, anh-balanced flow for
the smaller graph can be interpreted as a solution forG.

A3. Suppose that the graphG and the instanceI do not satisfy the PropertyA3, that is, there exists a
commodityi such thatF1(I−i) = F1(I). We omit the commodityi to obtain the smaller instanceI′ = I−i .

To finish the proof, note that all the reductions work also for half-integral and duplexh-route flows.

LetGandI be a graph and an instance satisfying the three properties A1-A3 and consider an arbitrary
integral minimum cost maximum flow for the instanceI. By the characterization ofh-route flows ash-
balanced flows (Theorem1.1), the flow of every commodity with flowh or more is already anh-route
flow. Our aim is, for every commodity with flow less thanh, to find new edge disjoint paths between the
sources and the relevant sink and to send some flow along each of them while not decreasing the flow
of other commodities much. For this process we start with a particular minimum cost maximum flow
that is described inObservation2.8.

Given an integral flow for the instanceI, we denote, for a non-terminal vertexv, the number of
empty edges incident tov by p(v), and we denote the number of empty edges connectingv and the sink
ti by mi(v). By the Property A2, we have∑k

i=1mi(v) = p(v) for each non-terminal vertexv.

Observation 2.8. For the graphG and the instanceI described above, there exists an integral minimum
cost maximum flow such that for every non-terminal vertexv and for everyi:

• mi(v)≤ dp(v)/2e.
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Moreover, in every integral minimum cost maximum flow, for every non-terminal vertexv and for every
i, the following holds:

• if mi(v) > p(v)/2 then there exists at least one flow path of a commodity other thani going
throughv.

Proof. Consider an arbitrary integral minimum cost maximum flow and for a non-terminal vertexv
denote byr−i(v) the number of flow paths of commodities other thani passing throughv. Note that all
empty edges incident tov are connected to a sink of degree exactlyh (the Property A2). We are going
to observe thatmi(v) < p(v)/2+ r−i(v), for every non-terminal vertexv and every commodityi.

Assume, for a contradiction, thatmi(v) ≥ p(v)−mi(v)+2r−i(v) for somev andi, and consider the
s− ti cut {v, ti}. Due to our assumption, the size of this cut is smaller than or equal to the size of the
trivial s− ti cut {ti} which is a contradiction with the Property A1. This completes the proof of the
second part ofObservation2.8.

s

v

t1
t2

p1
p2

p3 p4

Figure 4: An example of a non-terminal vertexv satisfying the first property ofObservation2.8. Dashed
lines represent empty edges and solid lines represent flow paths. We havep(v) = 6,m1(v) = 3,m2(v) = 3
andr−1(v) = 3.

Now, if there is a non-terminal vertexv and a commodityi with mi(v) > dp(v)/2e, then there are
r−i(v) > mi(v)− p(v)/2 flow paths of other commodities passing throughv. Choose one of them, say a
pathp of a commodityj, and reroute it toti . To be more precise, the new path goes from the sources to
the vertexv along the original pathp, and then it continues toti along one of the empty edges connecting
v andti . After the modification,mi(v) decreases by one andmj(v) increases by one; the cost and the size
of the total flow are not affected. This way we continue untilmi(v) ≤ dp(v)/2e for everyi. Notice that
the changes done in the flow aroundv will not destroy the desired property for any other vertex.

We apply the same rerouting procedure for every other non-terminal vertexv′ for which there exists
a commodityi′ such thatmi′(v′) > dp(v′)/2e.

From now on we fix some minimum cost maximum flow satisfyingObservation2.8and denote itF.
By the choice ofF and by the Property A2, each empty edge is incident either to two different sinks or
to a sink and to a vertex adjacent to another sink; the last assertion holds since otherwise there exists a
smaller cost flow of the same size. The idea of the proof is to exploit these empty edges to reroute some
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flow from other commodities to each sink with flow less thanh. If we succeed to provide a non-zero
flow along at leasth edges to each sink, we get a non-zeroh-balanced flow for each commodity.

We define an auxiliary structure, called octopus, which will help us to organize the rerouting. For-
mally, anoctopusis a (multi)graph that is a union of edge disjoint paths of length one and two that start
in the same vertex; the paths are calledtentacles. If an octopusO is a subgraph of the graphG and the
initial vertex of the paths (i. e., of the tentacles) is a vertexv, we say that the octopusis sitting in v.

Figure 5: An octopus

For every commodityi with flow smaller thanh, we define an octopusOi . The octopusOi is sitting
in the terminalti and hash− fi tentacles, wherefi denotes the amount of flow of a commodityi in F, and
the tentacles reach through different empty edges to neighboring vertices (if there are more thanh− fi
empty edges incident toti , we choose anyh− fi of them). Later we will amend the octopuses, namely
we will lengthen some of the tentacles.

Consider a non-terminal vertexv. The Property A2 implies that the number of tentacles reaching
v is p(v) and we denote them byτ1, . . . ,τp(v). If none of the octopuses reachesv by more thanp(v)/2
tentacles, there exists a permutationπ of the tentaclesτ1, . . . ,τp(v) which consists only of 2-cycles and
possibly one 3-cycle such that tentaclesτl andπ(τl ) belong to different octopuses. For example, always
greedily form a 2-cycle between tentacles of two distinct octopuses with the maximal number of remain-
ing tentacles ending inv. Do this until 2 or 3 tentacles remain (depending on the parity ofp(v)), and
then form the last cycle (only this last cycle can be a 3-cycle). We lengthen the tentacleτl through the
edge used by the tentacleπ(τl ) so thatτl now terminates in the sink in which the octopus with tentacle
π(τl ) is sitting.

If there exists an octopusOi that reaches the non-terminal vertexv by more thanp(v)/2 tentacles,
then such an octopus is exactly one. For such an octopus, byObservation2.8, the number of its tentacles
reachingv is exactlydp(v)/2e. There exists a permutationπ of p(v)−1 tentacles reachingv such that
it consists of 2-cycles of tentacles belonging to different octopuses, namely a matching of all but one
tentacles ofOi to all the others. In a similar way as before, each tentacleτ involved in the permutation
is lengthened to the sink in which the octopus with the tentacleπ(τ) is sitting. Recall that byObserva-
tion 2.8 there exists a flow path passing throughv that does not belong to the commodityi, and by the
minimality of the cost of the flowF, the terminal vertex of the path is adjacent tov.

At this point, each tentacle of an octopus reaches either another terminal vertex (we say that the
tentacletouchesthe corresponding commodity), or a flow path of another commodity that no other
tentacle reaches (again we say that the tentacletouchesthe corresponding commodity). Moreover, each
tentacleτ is stretched only through empty edges and at most one tentacle is stretched through each
empty edge in each direction; if there are two tentacles stretched through the same edge (in opposite
direction) they belong to different octopuses.
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Observation 2.9. For eachi, the number of tentacles that touch the commodityi is strictly less thanfi .

Proof. Were it not the case, it would be possible to redirect the complete flow of the commodityi,
through the tentacles touching it, to other terminals without decreasing the total flow, contradicting the
Property A3.

2.3 Upper bounds: Non-duplex flows

Proof ofTheorem2.1. We start by constructing the half-integralh-route flow of size (at least)F1(I)/2.
Then we explain how to increase the size of the flow to (at least)F1(I)/(2−2/h).

For each tentacle of the octopusOi touching the commodityj 6= i, we reroute a half unit of the flow of
a commodityj to ti along the edges that the corresponding tentacle is stretched through.Observation2.9
guarantees that every commodityj has enough flow to provide a half unit for each tentacle touching it
and yet to keep more thanf j/2 units for itself. We decrease the flow of every unaffected path to one
half.

At this point, the amount of flow of a commodityi with fi < h is h/2 and the amount of flow of a
commodityi with fi ≥ h is fi/2. Moreover, since the initial flow was integral (flow paths from source to
terminals were disjoint), the new flow paths of each individual commodity will be edge disjoint. Thus,
we have anh-balanced flow of size at leastF(I)/2, for the instanceI, and by construction, the flow is
half integral.

To prove the sharper bound (not necessarily with half-integral flows) we observe that for every
commodity with flow at mosth−1 in the initial flow, itsh-balanced flow at the end is at leasth/2 which
corresponds to the ratio 2−2/h. The only problem is with commodities with original flowh or more.
Thus, if we manage to slightly increase the final flow of these commodities, the proof is completed.
Recall that no octopus is sitting in a terminal vertex of a commodity with flowh or more.

We proceed as follows: every commodityt j with initial flow h or more will demand ataxof 1/(2h−
2) units of flow for each path that it provided to another commodity. Commodities are able to pay these
taxes since every commodity had initial flow that was at least one greater than the number of tentacles
touching it (Observation2.9) and every commodity requires help from at mosth−1 other commodities
(more precisely, needs at mosth−1 new edge disjoint paths). In the worst case, it keeps (only) a half
unit of flow for itself and spends the other half on taxes for theh−1 helpers.

s

tj
ti

0.5 0.5

tax

s

v

tjti

0.5 0.5

tax

Figure 6: Taxation: on the left side is depicted the case when a tentacle touches a terminal vertex, and
on the right side is depicted the case when a tentacle touches a path of other commodity.
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The flow corresponding to a tax of a commodityti paid to a commodityt j flows froms to ti along an
original path of a commodityi and then fromti to t j along the tentacle of the octopus sitting inti ; in the
case of an octopusOi touching a path of the commodityj (and not directly touching the sinkt j ) the flow
flows froms to ti along an original path of the commodityi, then along the tentacle of the octopusOi

and finally along an edge of the flow path of the commodityj that the tentacle ofOi touches. In addition
to this, we set the flow along each path that was unaffected by the rerouting process to 1/(2−2/h) (and
not to 1/2 as we did for the half-integral flow). In this way, a commodity with an initial flowfi ≥ h will
have a finalh-balanced flow at leastfi(h/(2h−2)), which corresponds to anh-route flow of the same
size.

Concerning the proof ofTheorem2.3, namely the half-integrality, notice that forh = 2 the taxes in
the previous proof are equal to 1/2. Thus the resulting flow is half-integral.

2.4 Upper bound: Duplex flows

Proof ofTheorem2.2. We now construct anh-balanced duplex flow of the same size as the original flow
F1(I). To do this, for each octopusOi we reroute some flow from other sinks to the sinkti . More exactly,
for a certain amountzi ∈ [0,1], we reroutezi units of the flow along each of the tentacles ofOi to ti . At
the same time, we guarantee that from the original flowfi to ti , exactly fi(1− zi) units are rerouted to
other sinks using their octopuses. If this rerouted flow is taken evenly from allfi incoming paths, then
the resulting flow of the commodityi has size at leasthzi and thus it is anh-route flow. If a tentacle of
Oi touches a flow path of a commodityj at v which is not the sinkt j , then we takezi/ f j units of the
rerouted flow from this flow path and the remaining flow is routed fromt j back one edge along tov. (Cf.
the last paragraph of the proof.)

The choice ofzi guarantees that the commodities with original flow less thanh can be rerouted.
On the other hand, each commodity with flowh or more is touched by less thenh tentacles due to
Observation2.9. Consequently there is enough original flow for the rerouting and if taken evenly from
all paths, the flow of this commodity is also anh-route flow afterwards. After the rerouting, each edge
has in each direction a flow of at most 1, either at most 1 from the original flow or at mostzi ≤ 1 from
the rerouting along one tentacle.

It remains to guarantee the existence of numberszi described above. For simplicity, renumber the
commodities so that the firstk′ sinksti are exactly those with the initial flowfi < h, that is, exactly those
with an octopus. Letai j be the number of tentacles ofO j touching the commodityi. We need the values
zi to satisfy, for eachi ≤ k′,

k′

∑
j=1

ai j zj = fi(1−zi) . (2.2)

Define a functionF : Rk′ → Rk′ so that itsith coordinate is

(F(~z))i = 1− 1
fi

k′

∑
j=1

ai j zj .
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Then the system of equations (2.2) is equivalent to the equation~z= F(~z). Due toObservation2.9 we
know that for eachi ≤ k′

k′

∑
j=1

ai j < fi . (2.3)

This implies thatF maps the unit cube[0,1]k
′

to itself. Obviously,F is continuous as it is a linear
function. Using Brouwer’s fixed-point theorem (which asserts that any continuous mapping from a ball
to itself has a fixed point) and the fact that a ball and a cube are homeomorphic, we conclude thatF has
a fixed point, that is, the equation~z= F(~z) has a solution. This solution also satisfies the system (2.2),
which concludes the proof. Note that the proof is still constructive, sinceF is linear and we can find the
solution efficiently.

In fact, inequalities (2.3) imply thatF is a strong contraction under thel∞ norm, which means that
there exists a constantα < 1 such that for any~y,~z∈ [0,1]k

′
, it holds that

‖F(~z)−F(~y)‖∞ ≤ α · ‖~z−~y‖∞ ,

where‖~z‖∞ = maxi=1,...,k′ |zi |. For the constantα = maxi=1,...,k′(∑k′
j=1ai j / fi) the strong contraction prop-

erty follows easily for each coordinate ofF(~z)−F(~y) by subtracting the defining equations for(F(~z))i

and(F(~y))i . The strong contraction property implies that in the unit cube, there exists a (unique) solu-
tion of the equation~z= F(~z), namely a limit of points obtained by repeated applications ofF , starting
at any pointx the unit cube. (Note that the distances between subsequent points in the sequencex,
F(x), F(F(x)), etc., decrease in a geometric sequence due to the contraction property.) This gives an
alternative elementary proof without use of Brouwer’s theorem.

To prove the second part ofTheorem2.2, we slightly modify the octopuses. In the case of a non-
terminal vertexv and a 3-cycle(i jl ) in the permutationπ used for extending the tentacles, we do not
extend the tentacles along the cycle but instead we split each tentacle into two halves and extend them to
the remaining two vertices. Thus this 3-cycle will contribute 1/2 to eachai j , a jl , ali , a ji , al j , ail . Then,
for example, the edgevti will have flowzi to ti and(zj +zl )/2 from ti .

The same argument as above guarantees that the system of equations (2.2) has again a solution in
the unit cube, with flow at most 1 in each direction along any edge. It remains to verify that on any edge,
the sum of flows in both directions is at most 2−2/h. There are three types of such edges.

1. An edge used by two tentacles, one tentacle ofOi touching the commodityj and one tentacle
of O j touching the commodityi. This may be an edgetit j , or an edge incident to a non-terminalv and
involved in a 2-cycle(i j ) of the permutationπ. The total flow iszi +zj . We havefi , f j ≤ h−1 as there
are octopuses atti andt j , and the corresponding equations in (2.2) imply (after removing the left-hand
side terms for other tentacles) thatzj ≤ (h−1)(1−zi) andzi ≤ (h−1)(1−zj). Adding these inequalities
and dividing byh we obtain the desired boundzi +zj ≤ 2−2/h.

2. An edgevti with a non-terminal vertexv and involved in a 3-cycle(i jl ) of π. This edge has total
flow zi +(zj +zl )/2. Again fi , f j , fl ≤ h−1 and the corresponding equations in (2.2) imply

2(h−1)zi +zj +zl ≤ 2(h−1) ,
zi +2(h−1)zj +zl ≤ 2(h−1) ,
zi +zj +2(h−1)zl ≤ 2(h−1) .
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Adding the first inequality multiplied by 2(h−1) and the remaining two inequalities multiplied byh−2
yields the desired bound.

3. An edgevt j for a tentacle ofOi touching the commodityj at a non-terminal vertexv. The
flow is at most 1− zi/ f j of the original flow tot j , andzi − zi/ f j of the flow that is rerouted fromt j .
Sincezi ≤ 1, it suffies to show thatf j ≤ h to conclude that the total flow on the edgevt j is at most
1+ zi(1− 2/ f j) ≤ 2− 2/h. We argue as follows. If we redirect the unit of the original flow going
through the edgevt j to the sinkvi , we get another maximal flow with an empty edge adjacent tot j . By
the Property A2 the degree oft j is at mosth which in turn implies thatf j ≤ h.

3 Disconnecting cuts

We will denote the size of a minimumh-disconnecting cut for an instanceI by Ch(I).

Theorem 3.1. For every h≥ 2 and every instanceI of the single source flow problem,

Fh(I)
h

≤ Ch(I) ≤
(

2− 2
h

)
·Fh(I) . (3.1)

Moreover, for every h≥ 2 and everyε > 0 there exists an instanceI = {s; t} of the problem such that

(1− ε) ·Fh(I) ≤ Ch(I) , (3.2)

and for every k≥ 1 and every h≥ 2 there exists an instanceI such that

Fh(I)
h

= Ch(I) . (3.3)

Proof. Given a decomposition of anh-route flow into a linear combination of elementaryh-route flows,
we have to cut at least one of theh paths of everyh-system in the decomposition. Altogether we have to
cut edges of total capacity at leastFh(I)/h which proves the first inequality.

To prove the inequalityCh(I) ≤ (2−2/h) ·Fh(I) we observe that a minimum classical cut is also
anh-cut, and from the duality of flows and cuts we know that the size of this cut is equal toF1(I). We
apply the boundF1(I)≤ (2−2/h) ·Fh(I) of Theorem2.1(without loss of generality we assume that all
sinks in the instanceI areh-connected with the source) and the proof is completed.

Concerning the second part of the theorem, consider a graph consisting of two verticess and t
connected bym parallel edges, withm≥ h. The maximumh-route flow has sizem and the minimum
h-disconnecting cut has sizem− (h−1). We conclude that for everyε > 0 there exists an integerm
such that(m−h+ 1)/m≥ 1− ε and, thus, there exists an instanceI = {s; t} satisfying the inequality
(3.2). Note that a fractional disconnecting cut is in this case (almost)h-times better: take a fraction 1/h
of each edge in the cut.

For the last part of the theorem, consider the instance and the network inFigure3 with every edge
capacity set to one. Then,Fh(I) = hk andCh(I) = k.

The proof above implies that the minimal classical cut is a good approximation for theh-
disconnecting problem. It can be found efficiently, and thus we have:

Corollary 3.2. For every h≥ 2, there exists a polynomial time(2h−2)-approximation algorithm for
the h-disconnecting problem with a single source.

THEORY OFCOMPUTING, Volume 4 (2008), pp. 1–20 15

http://dx.doi.org/10.4086/toc
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Remark. The bound on the performance of the algorithm is not far from what happens for “bad”
instances. Think about a simple graph consisting of two verticesu,v connected byh parallel edges and
an instance with one commodity with source inu and sink inv: the minimum disconnecting cut has size
1 while the disconnecting cut obtained by the algorithm has sizeh.

We also note that the bound (3.1) can be slightly improved to

Fh(I)
h

≤ Ch(I) ≤
(

2− 2
h

)
·Fh(I)− (h−1)

by deleting all buth− 1 edges from the minimum classical cut (instead of deleting all the edges). If
there is only one commodity, this slightly modified procedure computes an optimalh-disconnecting cut.

4 Open problems

We conclude with two open problems about disconnecting cuts for multiroute flows. The approximation
ratio of the algorithm for disconnecting cuts for single source flow problems described in the last section
is 2h−2; design a better algorithm. Similarly, design an approximation algorithm for the disconnecting
cut problem for the more general multiroute multicommodity flow problems (e. g., single source and
non-uniform capacities, multiple sources and uniform capacities). As the close relation between classical
flows and multiroute flows is lost in these cases, a novel approach will be needed.
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