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Abstract: For an integeh > 1, anelementary h-route flovg a flow alongh edge disjoint

paths between a source and a sink, each path carrying a unit of flow, and a single commodity
h-route flowis a non-negative linear combination of elementarpute flows. An instance

of asingle source multicommaodity flow probldéon a graphG = (V, E) consists of a source
vertexs € V andk sinksty, ... tx € V corresponding t&k commodities; we denote jt=
(sit1,...,t). In thesingle source multicommodity multiroute flow probjese are given

an instanced = (s;ty,...,t) and an integeh > 1, and the objective is to maximize the
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total amount of flow that is transferred from the source to the sinks so that the capacity
constraints are obeyed and, moreover, the flow of each commodityhisarte flow.

We study the relation between classical and multiroute single source flows on undi-
rected networks with uniform capacities and we provide a tight bound. In particular, we
prove the following result. Given an instante- (s;ts,....tx) such that eack—t; pair is
h-connected, the maximum classical flow betwsemd thet; is at most(2 — 2/h)-times
larger than the maximurh-route flow betweers and thet; and this is the best possible
bound forh > 2. This, as we show, is in contrast to the situation of general multicom-
modity (i. e., multiple sources or non-uniform capacities) multiroute flows that are up to
k(1—1/h)-times smaller than their classical counterparts.

Furthermore, we introduce and investigdtglex flowslefined so that the capacity con-
straints on edges are applied independently for each direction. We show that for networks
with uniform capacities and for instances as above the maximum classical flow between
and the; is the same as the maximumroute duplex flow betweesand thet;. Moreover,
the total flow on each edge in the duplex flow can be restricté@ t02/h)C, whereC is
the capacity of each edge.

As a corollary, we establish a max-flow min-cut theorem for the single source multi-
commodity multiroute flow and cut. Ah-disconnecting cufor J is a set of edges C E
such that for each the maximunmh-route flow betweers andt; is zero. We show that the
maximumh-route flow is within 21— 2 of the minimurrh-disconnecting cut, independently
of the number of commodities; we also descrili@la— 2)-approximation algorithm for the
minimum h-disconnecting cut problem.

1 Flows, multiroute flows and cuts

A classical flow is (roughly) a non-negative linear combination of unit flows along path2|cfdlas-
sical flow theory is not much interested in the number of the paths or in interactions among them. Itis
plausible, for example, that there is an edge in the network that is used by every path of a given flow;
a failure of this single edge results in a loss of the entire flow. This property of the classical flow is
undesirable in some applications and motivated the definition of a multiroute flow. For a given integer
h > 1, themultiroute flow(or anh-route flow is a flow that is decomposable into a non-negative linear
combination of elementary-route flows where aelementary h-route flows a flow alongh edge dis-
joint paths between the source and the sink, each path carrying a unit oRflpuCJosely related to this
is the concept oh-balanced flows. A flow of siz# between two vertices is-balancedf the flow on
every edge is at mo#d /h. Clearly, evenyh-route flow is arh-balanced flow; the opposite (less obvious)
claim is also true: Everir-balanced (acyclic) flow is an-route flow [1, 6, 21].

A necessary and sufficient condition for the existence df-esute flow between two vertices is that
the vertices ard-connected. A corollary of the equivalenceltefoute flows anc-balanced flows is
that on uniform capacity networks with dnconnected sourceand sinkt, every maximuns-t-flow
is anh-route flow. However, for multicommodity flows ar@droute flows, this relation is no longer
valid. We investigate the relation between flows a&rwute flows for a special case of multicommodity

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 2


http://dx.doi.org/10.4086/toc

SINGLE SOURCEMULTIROUTE FLOWS AND CUTS

problems, namely for single source problems. An instance sihgle source multicommodity flow
problemfor a graphG = (V, E) consists of a source vertex V andk sinksty, .. .,t € V corresponding
to k commodities; we denote Jt= (s;t1,...,t). A (single-source) multicommodity flow is @rroute
flow if the flow corresponding to each commaodity istanoute flow.

We show that for undirected networks with uniform capacities and for instaheegs;ty, ..., t)
such that andt; areh-connected, for each= 1,...,k, the maximum classical flow betwesmnd the
tj is at most 2- 2/h times larger than the maximuharoute flow betweers and thet;; this bound is the
best possible fon > 2. In particular, foth = 2 the ratio is 1, implying that by imposing the requirement
that the flow be a 2-route flow, we do not lose anything with respect to the size of the flow. Moreover, if
the uniform capacity of the edges is integral, then there always exists a half-irttagrek flow of size
at least half of the maximum classical flow.

Furthermore, we introduce and investigdiglex flowslefined so that the capacity constraints on
edges are imposed independently for each direction, as if each undirected edge is replaced by two di-
rected edges in the opposite direction. To give an example, an edge with capacity 1 is able to carry a flow
of 1 in both direction simultaneously but it is not able to carry a flow of 1.5 in one direction even if the
other direction is not used. This is a natural model for network flows and as far as we know no specific
attention was given to it. For classical single commodity flow and single source multicommodity flow,
the sizes of the maximum non-duplex and duplex flows coincide since any classical flow can be modified
so that no edge is used in both directions. Fooute flows this simple transformation no longer works.
Nevertheless, we show that for networks withiformcapacities and for instancés- (s;ty, ..., t) such
thats andt; areh-connected, for each=1,...,k, the maximum classical flow betwesmand thetj has
the same size as the maximumroute duplex flow betweea and thet;. Moreover, the total flow on
each edge in the duplex flow can be restricted to2’h. Thus, our bound for duplex flows implies the
results for non-duplex flows described in the previous paragraph (except for the half-integrality).

Our results for single source flows are in sharp contrast with the situation of general (i. e., multiple
sources or non-uniform capacities) multiroute multicommodity flows: we describe an example with
commodities where the maximum classical flonk{4 — 1/h)-times larger than the maximuhroute
flow.

The other subject of the paper is cuts feroute flows. For the classical flow, a cut is a subset of
edges whose removal disconnects the source and the sink (or every source-sink pair, in a case of the
multicommodity flow). Analogously, we define cuts teroute flows. A subsdt C E of edges is called
anh-disconnecting cuor an instance of the multicommaodity flow if no source-sink pah-isonnected
in (V,E\ F). The h-disconnecting cuts correspond to integral solutions of a dual of a natural linear
programming formulation of the multiroute flow problem (seectionl.2). We establish a max-flow
min-cut theorem for the single source multiroute flow and the minimum disconnecting cut problems on
networks with uniform capacities. In particular, we show that the max-flow for the problem is within
2h— 2 of the min-cut. As a corollary of this relation we get2n — 2)-approximation algorithm for the
h-disconnecting cut problem.

1.1 Related results

Kishimoto and TakeuchiZ2] and later Aggarwal and Orlinl] studied single commodity multiroute
flows (cf. [6, 15, 14]). They provided the characterizationtefoute flows a$-balanced flows and also
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proved a duality of multiroute flows and multiroute cuts (for different cuts than those considered in this
paper). Multiroute flows and integral variants of multiroute flows have applications in communication
and routing problems (e. g4,[5, 20, 12] and references therein).

Another direction of research focuses on flows under the restriction that each commadity is allowed
to use only a limited number of paths: the edge disjoint paths problem and the unsplittable flow problem
allow one path per commodity[ 10, 11, 19, 23, 25, 27, 26, 34]; the h-splittable flow problem allows
at mosth, not necessarily disjoint, paths per commodity 24, 31, 30]; particular attention has been
given to single source unsplittable flow problem$8,[16, 25, 33]. Though there is a certain similarity
between thé-splittable flows and thk-route flows (in fact, they may even coincide for some instances),
there is also a substantial difference. Whereasibglittable flows may split, the-route flows have the
obligation to split.

Relations between flows and cuts have been studied for over half a century. M@Pgargerved
that the maximum number of edge disjoint paths between a pair of vertices is equal to the size of the mini-
mum subset of edges whose removal disconnects the pair. Ford and Fulkefigmoyed the celebrated
theorem about the duality of (single commaodity) flows and cuts in networks. Though an exact duality
does not hold for multicommodity flows and cuts, there are several theorems establishing an approxi-
mate duality (with the gap of order l&gfor different variants of the problem (Leighton and R&8][
Aumann and Raban8], Linial, London and Rabinovich?9], Garg, Vazirani and Yannakaki&§]).

1.2 Preliminaries

As indicated in the title, in this paper we deal with networks with uniform capacities. For simplicity
and without loss of generality we assume throughout the paper that every edge has capacity one. The
number of vertices is denotadand the number of edges; we allow parallel edges. The lett&r
denotes the number of commodities and the lditdre number of routes in the elementary multiroute

flow. Several times we need the characterizatiom-obute flows ash-balanced flows that was first
proved by Kishimoto and Takeuchi.

Theorem 1.1 ([L, 6, 21]). A single commodity flow without cycles is h-balanced if and only if it is an
h-route flow.

For an instancé of the multicommodity flow problem, we ugg'(J) for the size of the maximuri
route flow and¥™l (7) for the size of the maximurh-route duplex flow for the instande As mentioned
in the introduction, for single source multicommodity flow, the sizes of the maximum non-duplex and
duplex flows coincide. Thus we hagé(7) < FMl(3) < (7).

For a given flow, aremptyedge is an an edge unused by the flow. We will deal wiihimum
cost flowsseveral times. In such cases we consider the uniform cost functiondast(e) = 1, Ve €
E). Recall that a single source classical flow can be viewed as a single commodity flow problem and
therefore there exists an integral maximum flow for every instdndeere also exists a minimum cost
maximum flow that is integral, and its cost is just the number of hon-empty edges.

Consider a networks = (V,E). Lets,...,s bek sources andh, ... ,tx bek sinks of a multicom-
modity flow problem; we call the sources and sinks &sminals DefineQ; as the set of all elementary
h-route flows betweeg andtj and letQ = U!‘:1 Q;. As far as we know, no exact combinatorial algorithms
for computing the maximum multicommaodity flow are known (not even for the 1-route flow). Thus, for
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completeness we provide a linear programming formulation of the maximroute flow problem (the
variable f (q) represents the size of the flow along tieystemq, that is, a flow of sizef (q)/h along
each of theh paths ofg):

max z f(q) (1.1)
geQ

; f(g)/h < 1 VecE
geQ:ecq
f(@ > 0 vgqeQ.

The dual program corresponds to the fractional relaxation of the the minhwdistonnecting cut prob-
lem:

min h- EEx(e) (1.2)

Zx(e) > 1 vYgqeQ

ecq

x(e) > 0 VeeE.

By setting integrality constraints on the variablesve get an integer linear programming formulation
of the minimumh-disconnecting cut problem.

2 Relating flows and multiroute flows

In this section, we show thdtroute flows are not much smaller than classical flows under certain
assumptions: single source, uniform capacity, and connectivity. We prove the following theorems for
non-duplex and duplex flows, respectively.

Theorem 2.1. Let G= (V,E) be an undirected graph and 16t= (s;ts,...,t) be an instance of the
single source multicommaodity flow problem such that for each i, s jaa th-connected for a given
h> 2. Then

FYI) < (2-2/h)-F") . (2.1)
There also exists a half-integral h-route flow of size at |€&0) /2.

Theorem 2.2. Let G= (V,E) be an undirected graph and 16t= (s;ts,...,t) be an instance of the
single source multicommodity flow problem such that for each i, s jaa th-connected for a given
h > 2. Then, for the duplex flows,

(1) = 7).

and moreover the equality can be achieved by a duplex flow with a total flow on each edge of at most
2—2/h.
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Note thatTheorem2.2 implies Theorem?2.1, with the exception of the half-integrality: we can use
the duplex flow scaled down so that we multiply a flow along each edge by a factg»f2/h).
Nevertheless, we give also a direct proofléfeorem2.1 One consequence of this proof is that in case
of h =2, even the sharper bound can be achieved by a half-integral flow. Sinbe=f@rthe factor is
2—2/h=1, and a trivial bound™(J) < F(J) holds for everyh, we have the following corollary which
shows that by imposing the requirement that the flow be a 2-route flow, we do not lose anything with
respect to the size of the flow.

Corollary 2.3. Let G= (V,E) be an undirected graph and 16t= (s;t;,...,t) be an instance of the
single source multicommodity flow problem such that for each i, sjaard B-connected. Then

FLI) = F2(9).
In addition, the equality can be achieved by a half-inte@abute flow.

Before proving the upper bounds, we first showserction2.1, that forh-route flows with a single
source, the factor of 2 2/h is the best possible and also that the assumptions of single source and unit
capacity are essential. Then,Section2.2we develop the common parts of the upper bound proofs and
finally in Section2.3and2.4we show the upper bounds for non-duplex and duplex flows, respectively.

2.1 Lower bounds

Theorem 2.4. For every pair of integers k > 2 there exist an undirected graph G and an instance
J = (sty,...,t) of the single source multicommodity flow problem such that for each i, s;ard t
h-edge-connected, and, at the same time,

F(9) > (2— ﬁ) -FNI).

Proof. The set of vertices of the graghconsists ok + 2 distinct vertices, v,ty, ..., t. The set of edges
containsh — 1 parallel edges betweerandt;, and an edge betwegrandyv, fori =1,... ,k (Figurel).
Consider the instande= (s;ty, .. .,tk). An elementanh-route flow betwees andt;, fori =1,... k,

Figure 1: The grapks for the lower bound

has to use two edges from the Set= {{t;v} : j = 1,...k}. Thus, the totah-route flow for the instance
J is upper bounded bly- |[F|/2, that is,7"(J) < hk/2. On the other hand;*(J) = k(h— 1). This yields
the desired bound. O]
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The situation is completely different for general multicommodityoute flows. Even though the
maximum 2-route flow is as large as the maximum 1-route flow for single source multicommodity in-
stances, for general instances the ratio between the sizes of a maximum 1-route flow and a maximum
2-route flow is as large dg/2. On the other hand, a trivial upper bound on the rati®%g) < kF"(7).

Theorem 2.5. For every pair of integers fk > 2 there exists a graph & (V,E) and an instancé =
(s1,---,S;t1,---,t) of the multicommodity flow problem such that for each i, the verticeaadt are
h-connected, and, at the same time,

FHI) >k <1— Ii) FNI).

Proof. Let G be a graph otk + 1 distinct verticews, ..., k.1 With v; connected by — 1 parallel edges
with vi;1, fori=1,... k, andvk,1 connected by an edgewith v; (Figure2). Consider an instanck
with s = v andt; = vi,q, fori = 1,...,k. Then,¥%(J) = k(h—1). On the other handf"(J) < h, since

S1

Sk =14 s3 = ta

S4 = tg
Figure 2: The grapks forh=4 andk =5

an elementary-route flow betweers andt; has to use the edge= {v1,v1}, for everyi =1,... k.
This yields the desired bound. O

Theorem2.1relies on the assumption that the network has uniform edge capacities. The next theo-
rem shows that without this assumption, the result does not hold.

Theorem 2.6. For every C> 1 and every integer b 1, there exists an undirected network=6(V, E)
with maximum edge capacity C and an instafice (s;ts,...,tx) of the single source multicommodity
flow problem such that for eachF!(s,t;) = F"(s,t;), and, at the same time,

F10) > (C— Cgl) FN(T).
Proof. Choose&k= [(C(h—1)+1)/h] and consider a netwoi® with k+ 2 vertices/ = {s,u,t3,to,.. .t}
connected in the following ways is connected withu by h edgesh — 1 of them with capacitfC and

one with capacity 1, and for eac¢ke {1,...,k}, u andt; are connected by edges, each of capacity 1
(Figure3). Then, for an instancé= (s;ty, ..., t) we haved*(J) = C(h— 1) + 1 yetF"(J) = h. O
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(51

ty

Figure 3: A bad network for nonuniform single soufeeoute flows (forh = 5).

2.2 Upper bounds: Preliminaries

In this section we cover three steps of the proof that are common for both non-duplex and duplex flows.
The first step is essentially an induction: We restrict ourselves to instances with several useful proper-
ties, using the fact that any potential minimal counterexample has these properties. Second, on these
instances, we choose some suitable maximal classical flow. Third, based on this flow, we define certain
auxiliary structures on the empty edges. In the last step of the proof, which is done in the next subsec-
tions separately for non-duplex and duplex flows, we use these empty edges to reroute some flow and
obtain anh-route flow of the appropriate size.

The following lemma shows that it is sufficient to prove Theoreélrisand 2.2 only for graphs
G = (V,E) and instance$ = (st1,...,t) satisfying the following three properties:

Al For each commodity, the only minimunms—t; cut is the cut{t;} (we call it atrivial cut).

A2 In every integral maximum flow for the instangeeach empty edge is incident to at least one of
the sinkg;, and, moreover, if an empty edge is incident to exactly one sink, then the degree of the
sink is exactlyh.

A3 Omitting any of the sinks from the instangeesults in a decrease of the maximum flow (i. e., for
everyi, if we denote byl_; the instancd without the sinktj, 7(J_;) < F%(7)).

Lemma 2.7. Let G andJ be a graph and an instance that represent a conterexampléémrem?.1
or Theorem2.2 with minimal nH-k (the number of edges plus the number of commodities). Then the
Properties A1-A3 hold.

Proof. Suppose we have a graghand an instancé that do not satisfy the Properties A1-A3. We
construct a smaller grapgh and an instanc# such that the classical maximum flow is the same in both
cases and the maximal size of any typenagbute flow considered in the theorems can only decrease.
Thus ifG andJ violate any claim in the theorems, then aBandJ’ violate it and the proof is completed.
Al. Assume that there exists a commoditgnd a minimum cu€ for the commodity that is not
trivial. Let 6; denote the connectivity af andt; and let us denote by an integral minimum cost
maximum flow forJ. If the only commodity in the flov that uses edges in the diis the commodity
i, we perform the following modification db: thet;-side of G is merged into a single vertéxthat is,
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keep every edge on treside, remove every edge on theside and for every edggu, v} € C with v
on thet;-side, replacqu,v} by a new edgdu,t}. We get a grapl@’ that is smaller thai® and for an
instance)’ = (s;ty, .. .ti—1,t,ti41,...,t) on G/, the connectivity o andt; is g; for j € {1,... Kk}, | #1,
and the connectivity of andt is &, and the (classical) maximum flows fbin G and forJ’ in G’ have
the same size. The gragi is smaller tharG yet 37(J) = 3(7') (note that multi-edges may occur).
Any h-balanced flow fof’ in G’ can be easily extended into hfbalanced flow of the same size for the
instance] in G.

If there are also some other commodities that use th€daotthe flow F, we redirect the part of
their flow going througltC to t;. This is possible since the cut is minimal and there will be no other
commodities interfering. This way we maintain the same amount of the total flow and we argue as
before.

A2. From now on we assume that for every commodity, every minimum cut is the trivial one. We
denote byF an integral minimum cost maximum flow féithat does not satisfy the Property A2. Recall
that the cost is uniform, i. e., the cost of an integral flow is just the number of edges used.

Assume first that there exists an edghat is empty irF and that is not incident to any of the sinks
ti. Sinceeis not incident to any terminal node and since for evieeach minimums—t; cut is the
trivial one, removinge from the graphG does not decrease the connectivity of any commodity and the
maximum flow for the instancé As in the previous proof, amn-balanced flow for the smaller graph can
be interpreted as a solution fGx.

Similarly, if there exists an edgethat is empty irf and that is incident to exactly one sink and the
degree of the sink is higher thdm deletion ofe does not decrease the connectivity of any commodity
belowh and it does not decrease the maximum flow for the instdndggain, anh-balanced flow for
the smaller graph can be interpreted as a solutiosfor

A3. Suppose that the grafihand the instanc&do not satisfy the Proper#3, that is, there exists a
commodityi such that*(J_;) = F(J). We omit the commodityto obtain the smaller instande=1J_;.

To finish the proof, note that all the reductions work also for half-integral and dinplexte flows.

O

LetG andJ be a graph and an instance satisfying the three properties A1-A3 and consider an arbitrary
integral minimum cost maximum flow for the instariteBy the characterization df-route flows as-
balanced flowsTheoreml.1), the flow of every commodity with flovih or more is already ah-route
flow. Our aim is, for every commodity with flow less thanto find new edge disjoint paths between the
sources and the relevant sink and to send some flow along each of them while not decreasing the flow
of other commodities much. For this process we start with a particular minimum cost maximum flow
that is described i®bservatior?.8.

Given an integral flow for the instande we denote, for a non-terminal vertex the number of
empty edges incident oby p(v), and we denote the number of empty edges connevtamgl the sink
t by m(v). By the Property A2, we havgK_; m(v) = p(v) for each non-terminal vertex

Observation 2.8. For the graplG and the instancgdescribed above, there exists an integral minimum
cost maximum flow such that for every non-terminal verte@nd for everyi:

e m(v) < [p(v)/2].
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Moreover, in every integral minimum cost maximum flow, for every non-terminal veréad for every
i, the following holds:

o if m(v) > p(v)/2 then there exists at least one flow path of a commodity other itlggoing
throughv.

Proof. Consider an arbitrary integral minimum cost maximum flow and for a non-terminal vertex
denote byr_;(v) the number of flow paths of commodities other thgrassing throughk. Note that all
empty edges incident toare connected to a sink of degree exatitlghe Property A2). We are going
to observe that (v) < p(v)/2+r_i(v), for every non-terminal vertexand every commodity.

Assume, for a contradiction, thag(v) > p(v) —m(v) + 2r_;(v) for somev andi, and consider the
s—t; cut{vt}. Due to our assumption, the size of this cut is smaller than or equal to the size of the
trivial s—t; cut {t;} which is a contradiction with the Property A1l. This completes the proof of the
second part oDbservatior2.8.

Figure 4: An example of a non-terminal vertezatisfying the first property dbservatior2.8. Dashed
lines represent empty edges and solid lines represent flow paths. Wp(liawe6, my (v) = 3, mp(v) =3
andr_q(v) = 3.

Now, if there is a non-terminal vertexand a commodity with m(v) > [p(v)/2], then there are
r_i(v) > m(v) — p(v)/2 flow paths of other commodities passing throwglChoose one of them, say a
pathp of a commaodityj, and reroute it t&;. To be more precise, the new path goes from the satce
the vertexv along the original patlp, and then it continues tpalong one of the empty edges connecting
vandt;. After the modificationm (v) decreases by one ang(v) increases by one; the cost and the size
of the total flow are not affected. This way we continue umtilv) < [p(v)/2] for everyi. Notice that
the changes done in the flow arowndill not destroy the desired property for any other vertex.

We apply the same rerouting procedure for every other non-terminal wéffi@xwhich there exists
a commodityi’ such thamy, (V') > [p(V)/2]. O

From now on we fix some minimum cost maximum flow satisfy@lgservatior2.8and denote ifF.
By the choice off and by the Property A2, each empty edge is incident either to two different sinks or
to a sink and to a vertex adjacent to another sink; the last assertion holds since otherwise there exists a
smaller cost flow of the same size. The idea of the proof is to exploit these empty edges to reroute some
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flow from other commodities to each sink with flow less thanif we succeed to provide a non-zero
flow along at leash edges to each sink, we get a non-ze+isalanced flow for each commodity.

We define an auxiliary structure, called octopus, which will help us to organize the rerouting. For-
mally, anoctopuss a (multi)graph that is a union of edge disjoint paths of length one and two that start
in the same vertex; the paths are calledtacles If an octopu<O is a subgraph of the grapgh and the
initial vertex of the paths (i. e., of the tentacles) is a vestexe say that the octopus sitting in v

—A

0.7. ¢« ®
° ./
Figure 5: An octopus

For every commodity with flow smaller tharh, we define an octopus;. The octopu%; is sitting
in the terminat; and ha$ — f; tentacles, wher§ denotes the amount of flow of a commodiin F, and
the tentacles reach through different empty edges to neighboring vertices (if there are mdre than
empty edges incident tp, we choose anh — f; of them). Later we will amend the octopuses, namely
we will lengthen some of the tentacles.

Consider a non-terminal vertex The Property A2 implies that the number of tentacles reaching
vis p(v) and we denote them bsj, ..., 7). If none of the octopuses reacheby more thamp(v),/2
tentacles, there exists a permutationf the tentaclesy, .. ., 7., which consists only of 2-cycles and
possibly one 3-cycle such that tentacteandrn (7 ) belong to different octopuses. For example, always
greedily form a 2-cycle between tentacles of two distinct octopuses with the maximal number of remain-
ing tentacles ending im. Do this until 2 or 3 tentacles remain (depending on the paritp(9f), and
then form the last cycle (only this last cycle can be a 3-cycle). We lengthen the tenitduleugh the
edge used by the tentactér ) so thatyy now terminates in the sink in which the octopus with tentacle
m(7) is sitting.

If there exists an octopud; that reaches the non-terminal verteky more thanp(v)/2 tentacles,
then such an octopus is exactly one. For such an octopu3bbgrvatior?.8, the number of its tentacles
reachingv is exactly[p(v)/2]. There exists a permutationof p(v) — 1 tentacles reachingsuch that
it consists of 2-cycles of tentacles belonging to different octopuses, namely a matching of all but one
tentacles of); to all the others. In a similar way as before, each tentadteolved in the permutation
is lengthened to the sink in which the octopus with the tenta¢te is sitting. Recall that bydbserva-
tion 2.8 there exists a flow path passing througthat does not belong to the commaodityand by the
minimality of the cost of the floviF, the terminal vertex of the path is adjacentto

At this point, each tentacle of an octopus reaches either another terminal vertex (we say that the
tentacletouchesthe corresponding commodity), or a flow path of another commodity that no other
tentacle reaches (again we say that the tentacleheshe corresponding commodity). Moreover, each
tentacler is stretched only through empty edges and at most one tentacle is stretched through each
empty edge in each direction; if there are two tentacles stretched through the same edge (in opposite
direction) they belong to different octopuses.
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Observation 2.9. For eachi, the number of tentacles that touch the commodisystrictly less tharf;.

Proof. Were it not the case, it would be possible to redirect the complete flow of the commpodity
through the tentacles touching it, to other terminals without decreasing the total flow, contradicting the
Property A3. O

2.3 Upper bounds: Non-duplex flows

Proof of Theoren2.1 We start by constructing the half-integtaroute flow of size (at leastf(7) /2.
Then we explain how to increase the size of the flow to (at I€BS) /(2 — 2/h).

For each tentacle of the octopOgstouching the commodity # i, we reroute a half unit of the flow of
a commodityj tot; along the edges that the corresponding tentacle is stretched thi@bgéarvatior2.9
guarantees that every commodijtyas enough flow to provide a half unit for each tentacle touching it
and yet to keep more thaf}/2 units for itself. We decrease the flow of every unaffected path to one
half.

At this point, the amount of flow of a commoditywith f; < his h/2 and the amount of flow of a
commodityi with f; > his f;/2. Moreover, since the initial flow was integral (flow paths from source to
terminals were disjoint), the new flow paths of each individual commodity will be edge disjoint. Thus,
we have arh-balanced flow of size at leaSt(J)/2, for the instancéd, and by construction, the flow is
half integral.

To prove the sharper bound (not necessarily with half-integral flows) we observe that for every
commodity with flow at mosh — 1 in the initial flow, itsh-balanced flow at the end is at le&ag® which
corresponds to the ratio-22/h. The only problem is with commodities with original fldwor more.

Thus, if we manage to slightly increase the final flow of these commaodities, the proof is completed.
Recall that no octopus is sitting in a terminal vertex of a commodity with fiaw more.

We proceed as follows: every commodifywith initial flow h or more will demand #axof 1/(2h—

2) units of flow for each path that it provided to another commodity. Commodities are able to pay these
taxes since every commodity had initial flow that was at least one greater than the number of tentacles
touching it Observatior2.9) and every commaodity requires help from at miest 1 other commodities

(more precisely, needs at mdst- 1 new edge disjoint paths). In the worst case, it keeps (only) a half
unit of flow for itself and spends the other half on taxes fortihel helpers.

.tj

S S

Figure 6: Taxation: on the left side is depicted the case when a tentacle touches a terminal vertex, and
on the right side is depicted the case when a tentacle touches a path of other commaodity.
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The flow corresponding to a tax of a commoditpaid to a commodity; flows fromstot; along an
original path of a commodityand then front; tot; along the tentacle of the octopus sitting;irnin the
case of an octopu3; touching a path of the commodify(and not directly touching the sirK) the flow
flows fromsto t; along an original path of the commoditythen along the tentacle of the octopDis
and finally along an edge of the flow path of the commodlitiyat the tentacle dd; touches. In addition
to this, we set the flow along each path that was unaffected by the rerouting procg&at®2th) (and
not to 1/2 as we did for the half-integral flow). In this way, a commodity with an initial flpws h will
have a finah-balanced flow at leashk (h/(2h— 2)), which corresponds to amroute flow of the same
size. O

Concerning the proof ofheorem2.3, namely the half-integrality, notice that for= 2 the taxes in
the previous proof are equal tg2L Thus the resulting flow is half-integral.

2.4 Upper bound: Duplex flows

Proof of Theorenm?.2. We now construct ah-balanced duplex flow of the same size as the original flow
3"1(11). To do this, for each octopu® we reroute some flow from other sinks to the sinkvore exactly,

for a certain amoury; € [0, 1], we reroutez units of the flow along each of the tentaclesgfto t;. At

the same time, we guarantee that from the original ffpto t;, exactly fi(1 — z) units are rerouted to
other sinks using their octopuses. If this rerouted flow is taken evenly frofnialtoming paths, then
the resulting flow of the commodityhas size at leastz and thus it is ar-route flow. If a tentacle of

O; touches a flow path of a commodifyat v which is not the sink;, then we takez / f; units of the
rerouted flow from this flow path and the remaining flow is routed ftpback one edge along to (Cf.

the last paragraph of the proof.)

The choice ofz guarantees that the commodities with original flow less thaan be rerouted.
On the other hand, each commaodity with fldwor more is touched by less thdntentacles due to
Observatior2.9. Consequently there is enough original flow for the rerouting and if taken evenly from
all paths, the flow of this commaodity is also hfroute flow afterwards. After the rerouting, each edge
has in each direction a flow of at most 1, either at most 1 from the original flow or atangst from
the rerouting along one tentacle.

It remains to guarantee the existence of numbedescribed above. For simplicity, renumber the
commodities so that the firkt sinkst; are exactly those with the initial floy < h, that is, exactly those
with an octopus. Led;j be the number of tentacles Of touching the commodity. We need the values
z to satisfy, for each < K/,

K
D &z = fi(1-2). (2.2)
=1

Define a functiorF : RX — RX so that itsth coordinate is
1K
(F(@)i=1- T J;a;,-z,- -
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Then the system of equation®.?) is equivalent to the equatigh= F(Z). Due toObservatior2.9 we
know that for each < k'

k/
ajj < fi. (2.3)
e

This implies thatF maps the unit cubd, 1]¥ to itself. Obviously,F is continuous as it is a linear
function. Using Brouwer’s fixed-point theorem (which asserts that any continuous mapping from a ball
to itself has a fixed point) and the fact that a ball and a cube are homeomorphic, we conclikdbdbkat
a fixed point, that is, the equati@n= F(Z) has a solution. This solution also satisfies the systeg),(
which concludes the proof. Note that the proof is still constructive, dmisdinear and we can find the
solution efficiently.

In fact, inequalitiesZ.3) imply thatF is a strong contraction under the norm, which means that
there exists a constant < 1 such that for any, z € [0,1]¥, it holds that

IF@)=F o < [2= Yo,

where||Z|| = max_1 . |z|. For the constank = malew‘,k/(z'j":la;j/fi) the strong contraction prop-

erty follows easily for each coordinate B{Z) — F(y) by subtracting the defining equations {t(2));

and(F (Y));. The strong contraction property implies that in the unit cube, there exists a (unique) solu-
tion of the equatiorz = F(Z), namely a limit of points obtained by repeated applications aftarting

at any pointx the unit cube. (Note that the distances between subsequent points in the sequence
F(x), F(F(x)), etc., decrease in a geometric sequence due to the contraction property.) This gives an
alternative elementary proof without use of Brouwer’s theorem.

To prove the second part dheorem2.2, we slightly modify the octopuses. In the case of a non-
terminal vertexv and a 3-cyclgijl ) in the permutatiorr used for extending the tentacles, we do not
extend the tentacles along the cycle but instead we split each tentacle into two halves and extend them to
the remaining two vertices. Thus this 3-cycle will contribuf@ to eache;j, aji, ai, a;ji, &j, ai. Then,
for example, the edge; will have flow z tot; and(zj +z)/2 fromt;.

The same argument as above guarantees that the system of equaphag again a solution in
the unit cube, with flow at most 1 in each direction along any edge. It remains to verify that on any edge,
the sum of flows in both directions is at most2/h. There are three types of such edges.

1. An edge used by two tentacles, one tentacl®,ofouching the commodity and one tentacle
of O; touching the commodity. This may be an edgs;, or an edge incident to a non-terminehnd
involved in a 2-cyclg(ij) of the permutatiorr. The total flow isz +z;. We havef;, f; <h—1 as there
are octopuses atandt;j, and the corresponding equations 22 imply (after removing the left-hand
side terms for other tentacles) that< (h—1)(1—z) andz < (h—1)(1—z;). Adding these inequalities
and dividing byh we obtain the desired bourzpH-z; <2 —2/h.

2. An edgevt; with a non-terminal vertex and involved in a 3-cycléijl ) of . This edge has total
flow z +(zj +2)/2. Againfj, f;, fi <h—1 and the corresponding equations 2 imply

2h—1)z+zj+z < 2(h-1),
z+2h—-1)zj+7 2(h—1),

<
Z+z+2h-1)z < 2h-1).
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Adding the first inequality multiplied by(®— 1) and the remaining two inequalities multiplied by 2
yields the desired bound.

3. An edgewvt; for a tentacle ofQ; touching the commodity at a non-terminal vertex. The
flow is at most 1-z/f; of the original flow tot;, andz —z/f; of the flow that is rerouted frorty.
Sincez < 1, it suffies to show thaf; < h to conclude that the total flow on the edgg is at most
1+z7(1-2/fj) <2-2/h. We argue as follows. If we redirect the unit of the original flow going
through the edget; to the sinkv;, we get another maximal flow with an empty edge adjacetit tBy
the Property A2 the degree gfis at mosth which in turn implies thaff; < h. O

3 Disconnecting cuts

We will denote the size of a minimumrdisconnecting cut for an instangdy C"(7).
Theorem 3.1. For every h> 2 and every instancg of the single source flow problem,

h
J éj) < ehg) < (2— E) FNI) . (3.1)
Moreover, for every i+ 2 and everye > 0 there exists an instance= {s;t} of the problem such that
(1-#)-3"0) < €"0), (3.2)
and for every k> 1 and every h> 2 there exists an instancesuch that
h
gth(j) = ¢e). (3.3)

Proof. Given a decomposition of dmroute flow into a linear combination of elementdryoute flows,
we have to cut at least one of th@aths of evenh-system in the decomposition. Altogether we have to
cut edges of total capacity at le@&t(J) /h which proves the first inequality.

To prove the inequalite"(J) < (2—2/h)-F"(J) we observe that a minimum classical cut is also
anh-cut, and from the duality of flows and cuts we know that the size of this cut is eqGd(1p. We
apply the bound(J) < (2—2/h)-F"(J) of Theoren?.1 (without loss of generality we assume that all
sinks in the instancg areh-connected with the source) and the proof is completed.

Concerning the second part of the theorem, consider a graph consisting of two vericds
connected byn parallel edges, witlm > h. The maximumh-route flow has sizen and the minimum
h-disconnecting cut has siza— (h—1). We conclude that for every > 0 there exists an integen
such thatm—h+1)/m> 1— € and, thus, there exists an instarice {s;t} satisfying the inequality
(3.2). Note that a fractional disconnecting cut is in this case (alntesthes better: take a fractioryih
of each edge in the cut.

For the last part of the theorem, consider the instance and the netwiiture 3 with every edge
capacity set to one. Thefi(J) = hkandCh(J) = k. O

The proof above implies that the minimal classical cut is a good approximation foh-the
disconnecting problem. It can be found efficiently, and thus we have:

Corollary 3.2. For every h> 2, there exists a polynomial tim@h — 2)-approximation algorithm for
the h-disconnecting problem with a single source.
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Remark. The bound on the performance of the algorithm is not far from what happens for “bad”
instances. Think about a simple graph consisting of two verticesonnected by parallel edges and
an instance with one commodity with sourcaliand sink inv: the minimum disconnecting cut has size
1 while the disconnecting cut obtained by the algorithm hastsize
We also note that the bound.() can be slightly improved to

?hrf” < ey < <2ﬁ)-ff“(ﬂ)<h1)

by deleting all buth — 1 edges from the minimum classical cut (instead of deleting all the edges). If
there is only one commodity, this slightly modified procedure computes an ogtidiatonnecting cut.

4 Open problems

We conclude with two open problems about disconnecting cuts for multiroute flows. The approximation
ratio of the algorithm for disconnecting cuts for single source flow problems described in the last section
is 2h— 2; design a better algorithm. Similarly, design an approximation algorithm for the disconnecting
cut problem for the more general multiroute multicommodity flow problems (e. g., single source and
non-uniform capacities, multiple sources and uniform capacities). As the close relation between classical
flows and multiroute flows is lost in these cases, a novel approach will be needed.
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References

[1] * CHARU C. AGGARWAL AND JAMES B. ORLIN: On multiroute maximum flows in networks.
Networks 39:43-52, 2002.\/iley:10.1002/net.1004Q8 1,1.1,1.1

[2] * R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN: Network Flows: Theory, Algorithms and
Applications Prentice-Hall, 1993.1

[3] * YONATAN AUMANN AND YUVAL RABANI: An O(logk) approximate min-cut max-flow
theorem and approximation algorithmSIAM Journal on Computing27(1):291-301, 1998.
[SICOMP:10.1137/S0097539794285%83.1

[4] * AMITABHA BAGCHI, AMITABH CHAUDHARY, AND PETR KOLMAN: Short length Menger’s
theorem and reliable optical routing. Theoretical Computer Science339:315-332, 2005.
[TCS:10.1016/j.tcs.2005.03.0091.1

[5] * AMITABHA BAGCHI, AMITABH CHAUDHARY, PETR KOLMAN, AND CHRISTIAN SCHEI-
DELER: Algorithms for fault-tolerant routing in circuit switched networksSIAM Journal on
Discrete Mathematic21:141-157, 2007.IDMA:10.1137/S08954801024197431.1

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 16


http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#AO:02
http://dx.doi.org/10.1002/net.10008
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#AMO:93
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#AR:98
http://dx.doi.org/10.1137/S0097539794285983
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BCK:05
http://dx.doi.org/10.1016/j.tcs.2005.03.009
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BCKS:07
http://dx.doi.org/10.1137/S0895480102419743
http://dx.doi.org/10.4086/toc

SINGLE SOURCEMULTIROUTE FLOWS AND CUTS

[6] * AMITABHA BAGCHI, AMITABH CHAUDHARY, PETR KOLMAN, AND JIRi SGALL: A simple
combinatorial proof for the duality of multiroute flows and cuts. Technical Report 2004-662,
Charles University, Prague, 2004, 1.1, 1.1

[7] * GEORGBAIER, EKKEHARD KOEHLER, AND MARTIN SKUTELLA: Thek-splittable flow prob-
lem. Algorithmica 42(3-4):231-248, 2005A[gorithmica:jtl3r3k63352348K 1.1

[8] * ALOK BAVEJA AND ARAVIND SRINIVASAN: Approximation algorithms for disjoint paths and
related routing and packing probleniathematics of Operations Researéh(2):255-280, 2000.
1.1

[9] * HENNING BRUHN, JAKUB CERN\?, ALEXANDER HALL, AND PETR KOLMAN: Single source
multiroute flows and cuts on uniform capacity networksPtac. 18th Ann. ACM-SIAM Symposium
on Discrete Algorithms (SODA'0/pp. 855-863. SIAM, 2007.ODA:1283383.12834175 *

[10] * AMIT CHAKRABARTI, CHANDRA CHEKURI, ANUPAM GUPTA, AND AMIT KUMAR: Approx-
imation algorithms for the unsplittable flow probleilgorithmica 47(1):53—78, 2007 Algorith-
mica:m5710531h251481.51.1

[11] * CHANDRA CHEKURI AND SANJEEV KHANNA: Edge-disjoint paths revisitedACM Transac-
tions on Algorithms3, 2007. PCM:1290672.1290693 1.1

[12] * ISRAEL CIDON, RAPHAEL ROM, AND YUVAL SHAVITT : Analysis of multi-path routinglEEE/
ACM Transactions on Networking(6):885—-896, 1999.ACM:323983.32399R 1.1

[13] * Y. DINITZ, N. GARG, AND M. GOEMANS: On the single source unsplittable flow problem.
Combinatorica19(1):17-41, 1999.9pringer:pgOcrc9nglfdmgjj 1.1

[14] * D. DU AND R. CHANDRASEKARAN: The multiroute maximum flow problem revisitedNet-
works 47(2):81-92, 2006.\}iley:10.1002/net.20099 1.1

[15] * DONGLEI Du: Multiroute Flow Problem Ph.D. thesis, The University of Texas at Dallas, 2003.
1.1

[16] * THOMAS ERLEBACH AND ALEXANDER HALL: NP-hardness of broadcast scheduling and in-
approximability of single-source unsplittable min-cost fldeurnal of Scheduling7(3):223-241,
2004. Bpringer:h57n764rq01245[(81.1

[17] * L. R. FORD AND D. R. FULKERSON: Maximum flow through a networkCanad. J. Math.
8:399-404, 1956.1.1

[18] * NAVEEN GARG, VIJAY V. VAZIRANI, AND MIHALIS YANNAKAKIS : Approximate max-flow

min-cut theorems and their applicationSIAM Journal on Computing25(2):235-251, 1996.
[SICOMP:10.1137/S0097539793243014.1

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 17


http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BCKS:04
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BKS:05
http://springerlink.metapress.com/link.asp?id=jtl3r3k633523486
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BS:00
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#BCHK:07
http://portal.acm.org/citation.cfm?id=1283383.1283475
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#CCGK:07
http://springerlink.metapress.com/link.asp?id=m5710531h2514815
http://springerlink.metapress.com/link.asp?id=m5710531h2514815
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#CK:07
http://portal.acm.org/citation.cfm?id=1290672.1290683
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#CRS:99
http://portal.acm.org/citation.cfm?id=323983.323992
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#DGG:99
http://springerlink.metapress.com/link.asp?id=pg0crc9nqlfdmajj
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#DCH:06
http://dx.doi.org/10.1002/net.20099
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Du:03
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#EH:04
http://springerlink.metapress.com/link.asp?id=h57n764rq0124578
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#FF:56
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#GVY:96
http://dx.doi.org/10.1137/S0097539793243016
http://dx.doi.org/10.4086/toc

H. BRUHN, J.CERN\?, A. HALL, P. KOLMAN, AND J. SGALL

[19] * V. GURUSWAMI, S. KHANNA, R. RAJARAMAN, B. SHEPHERD, AND M. YANNAKAKIS : Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related prob-
lems. Journal of Computer and System Sciend@&3):473-496, 2003.JCSS:10.1016/S0022-
0000(03)00066-7 1.1

[20] * KOUSHIK KAR, MURALI KODIALAM, AND T. V. LAKSHMAN: Routing restorable bandwidth
guaranteed connections using maximum 2-route flolg&E/ACM Transactions on Networking
11:772-781, 2003.ACM:948928.94893p 1.1

[21] * WATARU KIsHIMOTO: A method for obtaining the maximum multiroute flows in a network.
Networks 27(4):279-291, 19961, 1.1

[22] * WATARU KISHIMOTO AND M. TAKEUCHI: Onm-route flows in a networkEICE Transactions
J-76-A(8):1185-1200, 1993. (in Japanest)1l

[23] * J. M. KLEINBERG: Single-source unsplittable flow. IRroc. 37th FOCSpp. 68-77. IEEE
Computer Society Press, 1996.JCS:10.1109/SFCS.1996.5483.64.1

[24] * RONALD KOCH, MARTIN SKUTELLA, AND INES SPENKE Approximation and complexity
of k-splittable flows. InProceedings of the Third Workshop on Approximation and Online Al-
gorithms volume 3879 ofLecture Notes in Computer Sciengep. 244—-257. Springer, 2005.
[WADS:1871111265475j1]1 1.1

[25] * STAVROS G. KOLLIOPOULOS AND CLIFFORD STEIN: Approximation algorithms for
single-source unsplittable flow. SIAM Journal on Computing 31(3):919-946, 2002.
[SICOMP:10.1137/S0097539799355R814..1

[26] * PETR KOLMAN AND CHRISTIAN SCHEIDELER: Simple on-line algorithms for the maximum
disjoint paths problemAlgorithmicg 39(3):209-233, 2004.Algorithmica:ppcdpcxagm69d4v
1.1

[27] * PETR KOLMAN AND CHRISTIAN SCHEIDELER Improved bounds for the unsplittable flow
problem.Journal of Algorithms61(1):20-44, 2006.Hlsevier:10.1016/j.jalgor.2004.07.0061.1

[28] * ToOM LEIGHTON AND SATISH RAO: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithmslJournal of the ACM 46(6):787—-832, November 1999.
[JACM:331524.33152%6 1.1

[29] * N. LINIAL, E. LONDON, AND YU. RABINOVICH: The geometry of graphs and some of its
algorithmic applicationsCombinatorica 15(2):215-245, 19951.1

[30] * MAREN MARTENS AND MARTIN SKUTELLA: Flows on few paths: Algorithms and lower
bounds.Networks 48(2):68—76, 2006.\}iley:10.1002/net.20131 1.1

[31] * MAREN MARTENS AND MARTIN SKUTELLA: Length-bounded and dynamic k-splittable flows.
In Operations Research Proceedings 209p. 297-302, 2006. Jpringer:w2u3032j180448Lt
11

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 18


http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#GKRSY:03
http://dx.doi.org/10.1016/S0022-0000(03)00066-7
http://dx.doi.org/10.1016/S0022-0000(03)00066-7
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KKL:03
http://portal.acm.org/citation.cfm?id=948928.948935
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Kishimoto:96
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KT:93
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Kleinberg:96
http://doi.ieeecomputersociety.org//10.1109/SFCS.1996.548465
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KSS:05
http://springerlink.metapress.com/link.asp?id=l871111265475j11
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KS:02a
http://dx.doi.org/10.1137/S0097539799355314
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KS:04
http://springerlink.metapress.com/link.asp?id=ppc4pcxagm69d4jv
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#KS:06
http://dx.doi.org/10.1016/j.jalgor.2004.07.006
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#LR:99
http://portal.acm.org/citation.cfm?id=331524.331526
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#LLR:95
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#MS:06
http://dx.doi.org/10.1002/net.20121
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#MS:05
http://springerlink.metapress.com/link.asp?id=w2u3032j1804481t
http://dx.doi.org/10.4086/toc

SINGLE SOURCEMULTIROUTE FLOWS AND CUTS

[32] * K. MENGER Zur allgemeinen Kurventheorié&undam. Math.10:96-115, 1927.1.1

[33] * M. SKUTELLA: Approximating the single source unsplittable min-cost flow problénathe-
matical Programming, Ser.,®1(3):493-514, 2002 Springer:txfqg9gvdtwOcac(g 1.1

[34] * ARAVIND SRINIVASAN: Improved approximations for edge-disjoint paths, unsplittable flow, and
related routing problems. IRroc. 38th FOCSpp. 416—-425. IEEE Computer Society Press, 20-22
1997. FOCS:10.1109/SFCS.1997.6461.30.1

AUTHORS

Henning BruhrfAbout the author]

Mathematisches Seminar, UnivedéitHamburg, Germany
bruhn:@mathuni-hamburcde
http://www.math.uni-hamburg.de/home/bruhn/

Jakubéerry [About the author]

Department of Applied Mathematics, Faculty of Mathematics and Physics
Charles University, Czech Republic

kubeekammff.cuni.cz

http://kam.mff.cuni.cz/ kuba/

Alexander Hall[About the author]
Google Switzerland GmbH, Zurich, Switzerland
alex.hallegmail.com

Petr KolmanAbout the author]

Department of Applied Mathematics, Faculty of Mathematics and Physics
Charles University, Czech Republic

kolmarekammff.cuni.cz

http://kam.mff.cuni.cz/ “kolman/

Jifi Sgall[About the author]

Institute of Mathematics, AER, Czech Republic
sgalemathcascz
http://www.math.cas.cz/"sgall/

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 19


http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Menger:27
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Skutella:02
http://springerlink.metapress.com/link.asp?id=txfq9gvdtw0cac0g
http://theoryofcomputing.org/articles/main/v004/a001/bibliography.html#Srinivasan:97
http://doi.ieeecomputersociety.org//10.1109/SFCS.1997.646130
http://www.math.uni-hamburg.de/home/bruhn/
http://kam.mff.cuni.cz/~kuba/
http://kam.mff.cuni.cz/~kolman/
http://www.math.cas.cz/~sgall/
http://dx.doi.org/10.4086/toc

H. BRUHN, J.CERN\?, A. HALL, P. KOLMAN, AND J. SGALL

ABOUT THE AUTHORS

HENNING BRUHN has been a postdoc ativersiat Hamburg since summer 2006. In
2005 he obtained his Ph. D. under the supervisioR®hhard Diestel He spent the
following year in Grenoble learning combinatorial optimisation and French. He likes
rock climbing and tries to learn Japanese.

ALEXANDER HALL received a Master’s degree (“Diplom”) in Computer Science at the
Technische Universit Munchenin 1998. In December 2003 he completed his doctoral
studies in the group ofhomas Erlebacat theETH Zurichand received a Ph. D. for his
thesis “Scheduling and Flow-Related Problems in Networks.” After being a post-doc at
ETH Zirich andUC Berkeley he is now with Google in Zurich.

Jakus CERNY is finishing his Ph. D. at theepartment of Applied Mathematics of Charles
Universityin Prague. His advisor iBavel Valtr He is interested in computational and
discrete geometry and efficient algorithms in general. His hobbies are Aikido, improvi-
sational comedy theatre, outdoor activities.

PETR KOLMAN is an Assistant Professor @harles Universityn Prague, Czech Republic.
After obtaining his Ph. D., he spent a year atltteenz Nixdorf Institut at the University
of PaderbornGermany and a year at thiiversity of California, Riverside

JIRi SGALL grew up in Prague, Czechoslovakia, where he received his RNDr. degree
(equivalent of Master’s) at Charles University under supervision of Ant@&vochor.
Then he went taCarnegie Mellon Universitand received his Ph. D. under the super-
vision of Steven Rudich After that he went back to Prague, Czech Republic, where
he is now a senior researcher at thetitute of Mathematics of the Academy of Sci-
ences of the Czech Republidis main research interests are online and approximation
algorithms for scheduling and other combinatorial problems. He also worked in com-
munication complexity and proof complexity.

THEORY OF COMPUTING, Volume 4 (2008), pp. 1-20 20


http://www.math.uni-hamburg.de/
http://www.math.uni-hamburg.de/home/diestel/
http://portal.mytum.de/welcome
http://www.cs.le.ac.uk/people/te17/
http://www.ethz.ch/
http://berkeley.edu/
http://kam.mff.cuni.cz/
http://kam.mff.cuni.cz/
http://kam.mff.cuni.cz/~valtr/
http://kam.mff.cuni.cz/
http://wwwhni.uni-paderborn.de/en/
http://wwwhni.uni-paderborn.de/en/
http://www.cs.ucr.edu/
http://www.cmu.edu/
http://www.cs.cmu.edu/~rudich/
http://www.math.cas.cz/
http://www.math.cas.cz/
http://dx.doi.org/10.4086/toc

	Flows, multiroute flows and cuts
	Related results
	Preliminaries

	Relating flows and multiroute flows
	Lower bounds
	Upper bounds: Preliminaries
	Upper bounds: Non-duplex flows
	Upper bound: Duplex flows

	Disconnecting cuts
	Open problems
	References

