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NOTE

Computing Polynomials
with Few Multiplications
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Abstract: It is a folklore result in arithmetic complexity that the number of multiplication
gates required to compute a worst-case n-variate polynomial of degree d is at least

Ω

(√(n+d
d

))
,

even if addition gates are allowed to compute arbitrary linear combinations of their inputs.
In this note we complement this by an almost matching upper bound, showing that for any
n-variate polynomial of degree d over any field,√(n+d

d

)
· (nd)O(1)

multiplication gates suffice.
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1 Introduction

Arithmetic complexity is a branch of theoretical computer science which studies the minimal number
of operations (additions and multiplications) required to compute polynomials. A natural model of

∗Supported by NSF grant DMS-0835373.

2011 Shachar Lovett
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2011.v007a013

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2011.v007a013


SHACHAR LOVETT

computation in these settings is an arithmetic circuit, where the inputs are variables x1, . . . ,xn, gates
correspond to the +,× operations and multiplication by field elements, and the output gate computes
the required polynomial. The complexity measures associated with arithmetic circuits are their size and
depth. We refer the reader to [3] for an extensive survey on arithmetic circuits.

In this note we focus on the minimal number of multiplications required to compute a polynomial,
where additions of polynomials and multiplication by field elements are free. To this end, we consider a
non-standard model of arithmetic circuits where addition gates can compute arbitrary linear combinations
of their inputs (instead of just their sum). We assume both multiplication and addition gates have
unbounded fan-in. For a polynomial f we define its multiplicative complexity, denoted M( f ), to be the
minimal number of multiplication gates required to compute f in this non-standard model.

Consider polynomials of degree d in n variables over a field F. (In this note, we write “degree-d
polynomials” as a shorthand for “polynomials of total degree at most d.”) The number of possible
monomials of such a polynomial is

(n+d
d

)
. It is a folklore result in arithmetic complexity (see, e. g., [1,

Theorem 4.2]) that the number of multiplications required to compute some n-variate polynomial of
degree d is at least the square root of this number.

Theorem 1.1 (Theorem 4.2 in [1]). Let F be a field and n,d be two natural numbers. Then there exists

an n-variate polynomial f (x1, . . . ,xn) of degree d for which M( f )≥Ω

(√(n+d
d

))
.

Hrubeš and Yehudayoff [2] exhibit similar lower bounds even if one considers only polynomials with
0-1 coefficients.

Theorem 1.2 ([2]). Let F be a field and n,d be two natural numbers. Then there exists an n-variate

polynomial f (x1, . . . ,xn) of degree d with 0-1 coefficients for which M( f )≥Ω

(√(n+d
d

))
.

The aim of this note is to complement these lower bounds by an almost matching upper bound.

Theorem 1.3. Let F be a field and n,d be two natural numbers. Let f (x1, . . . ,xn) be any n-variate

polynomial of degree d over F. Then M( f )≤
√(n+d

d

)
· (nd)O(1) .

To the best of our knowledge, the best previous upper bound on the number of multiplications was

M( f )≤ O
(

1
n

(n+d
d

))
(see the discussion following Theorem 4.4 in [1]). We note that the circuit constructed in Theorem 1.3
has the following additional features, which can be immediately verified from the construction:

(1) It is a depth-4 circuit.

(2) If f has 0-1 coefficients, or if the field is of size at most poly(n), then the bound holds also in the
standard model of arithmetic circuits where addition gates compute the sum of their inputs (instead
of linear combinations of their inputs).

(3) If f is a real polynomial with positive coefficients, then the circuit computing f is monotone (i. e.,
all coefficients in the addition gates are positive).

We now turn to the proof.
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2 Proof of Theorem 1.3

We first fix some notation: let N := {0,1, . . .} and [n] := {1, . . . ,n}. We identify monomials in x1, . . . ,xn

with their exponent vectors e ∈ Nn, where we use the shorthand xe := xe1
1 . . .xen

n . We denote the set of
all n-variate degree-d monomials by M(n,d) := {e ∈ Nn : ∑ei ≤ d}. Note that |M(n,d)|=

(n+d
d

)
. The

weight of a monomial is |e| := ∑ei.
The main idea is to cover the set M(n,d) of monomials by few sums of pairs of sets. For sets

A,B⊆ Nn denote their sum by A+B := {a+b | a ∈ A,b ∈ B}.

Claim 2.1. Let {(Ai,Bi)}i∈[k] be pairs of subsets of Nn such that M(n,d)⊆
⋃k

i=1(Ai +Bi). Then for any
n-variate polynomial f (x1, . . . ,xn) of degree d we have M( f )≤ 2∑

k
i=1(|Ai|+ |Bi|).

Proof. Let f (x) = ∑e∈M(n,d) λexe be an n-variate polynomial of degree d. First compute all monomials xe

for e∈A1,B1, . . . ,Ak,Bk. This can be done with ∑
k
i=1(|Ai|+ |Bi|) multiplications (recall that multiplication

gates have unbounded fan-in). By assumption, for each monomial e∈M(n,d) there exists i∈ [k] such that
e ∈ Ai +Bi. For i ∈ [k],e′ ∈ Ai,e′′ ∈ Bi define δi,e′,e′′ ∈ {0,1} as follows: enumerate the triples (i,e′,e′′)
in some order; for a triple (i,e′,e′′), if the sum e′+ e′′ never occurred in a previous triple, set δi,e′,e′′ = 1,
otherwise set δi,e′,e′′ = 0. We thus have

f (x) = ∑
k
i=1 ∑e′∈Ai xe′×

(
∑e′′∈Bi λe′+e′′δi,e′,e′′ · xe′′

)
.

This representation allows one to compute f using only ∑
k
i=1 |Ai| additional multiplications.

We thus need to construct small sets {(Ai,Bi)} whose pairwise sums cover M(n,d). We will construct
these sets from polynomials in ∼ n/2 variables of degree ∼ d/2.

For a subset S⊆ [n] of variables denote by M(S,d) the set of all monomials of degree at most d in
the variables of S. Clearly |M(S,d)|=

(|S|+d
d

)
. In the following we identify [n] := Zn, i. e., we consider

indices modulo n. For i, j ∈ [n] define the interval [i, j] := {i, i+1, . . . , j} ⊆ Zn.

Claim 2.2. Let n be odd and d be even. For i = 1, . . . ,n, set Ai := M([i, i + (n− 1)/2],d/2) and
Bi :=M([i− (n−1)/2, i],d/2). Then M(n,d)⊆

⋃n
i=1(Ai +Bi).

Proof. Let e ∈M(n,d). We need to show that e ∈ Ai +Bi for some i ∈ [n]. Let m := (n− 1)/2. For
i ∈ [n] define the partial sum wi := ∑

m
`=1 ei+` where indices are taken modulo n. Note that

wi +wi+m = |e|− ei ≤ d− ei . (1)

We first claim that if wi,wi+m ≤ d/2 then e∈ Ai+Bi. We then proceed to show such an index i indeed
exists.

Assume first that wi,wi+m ≤ d/2. We will construct e′ ∈ Ai,e′′ ∈ Bi such that e = e′+ e′′. By
Equation (1), we can decompose ei = e′i + e′′i such that e′i,e

′′
i ≥ 0, wi + e′i ≤ d/2 and wi+m + e′′i ≤ d/2.

For j 6= i set e′j = e j,e′′j = 0 if j ∈ [i, i+m]\{i}; and e′j = 0,e′′j = e j if j ∈ [i−m, i]\{i}.
To conclude the proof we need to show that there exists i for which wi,wi+m ≤ d/2. Assume

this is not the case. Then there exists j for which w j > d/2. But then w j+m < d/2 by Equation (1).
Therefore there must exist i such that wi ≤ d/2 and wi−1 ≥ d/2. This concludes the proof since
wi+m = |e|− ei+m−wi−1 ≤ d/2 by Equation (1).
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We now conclude with the proof of Theorem 1.3.

Proof of Theorem 1.3. Let f (x) be an n-variate polynomial of degree d. Let n′ ≥ n,d′ ≥ d be minimal
such that n′ is odd and d′ is even. By Claim 2.2 we can find sets Ai,Bi, i ∈ [n′] such that

M(n,d)⊆M(n′,d′)⊆
n′

∑
i=1

(Ai +Bi) ,

and such that

|Ai|, |Bi|=
(
(n′+1)/2+d′/2

d′/2

)
≤ O

(
max

(
d

n5/4 ,
n1/2

d3/4

))
·

√(
n+d

d

)
.

Thus by Claim 2.2 we have M( f )≤ O
(

max
(

d
n1/4 ,

n3/2

d3/4

))
·
√(n+d

d

)
, justifying the claim.
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