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Abstract: In the Survivable Network Design Problem (SNDP), we are given an undirected
graph G(V,E) with costs on edges, along with an integer connectivity requirement r(u,v) for
each pair u,v of vertices. The goal is to find a minimum-cost subset E∗ of edges such that in
the subgraph of G induced by E∗, each pair u,v of vertices is r(u,v)-connected. In the edge-
connectivity version, a pair u,v is r(u,v)-connected if there are r(u,v) edge-disjoint paths
between u and v. Similarly, in the vertex-connectivity version, a pair u,v is r(u,v)-connected
if there are r(u,v) vertex-disjoint paths between u and v. The edge-connectivity version of
SNDP is known to have a factor 2 approximation. However, no non-trivial approximation
algorithm has been known so far for the vertex version of SNDP, except for special cases of
the problem.

We present an extremely simple randomized algorithm that achieves an O(k3 log |T |)-
approximation for this problem, where k denotes the maximum connectivity requirement, and
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T is the set of vertices that participate in one or more pairs with non-zero connectivity require-
ments. We also give a simple proof of the recently discovered O(k2 log |T |)-approximation
algorithm for the single-source version of vertex-connectivity SNDP. Our results establish
a natural connection between vertex-connectivity and a well-understood generalization of
edge-connectivity, namely, element-connectivity, in that an instance of vertex-connectivity
SNDP can be reduced to a small number of instances of the element-connectivity SNDP.

1 Introduction

In the Survivable Network Design Problem (SNDP), we are given an undirected graph G(V,E) with costs
on edges, and an integer connectivity requirement r(u,v) for each pair u,v of vertices. The goal is to find
a minimum cost subset E∗ of edges such that each pair (u,v) of vertices is connected by r(u,v) paths in
the subgraph induced by E∗. In the edge-connectivity version (EC-SNDP), these paths are required to be
edge-disjoint, while in the vertex-connectivity version (VC-SNDP), they are required to be vertex-disjoint.
It is not hard to show that EC-SNDP can be cast as a special case of VC-SNDP (see the full version
of [8]). We denote by n the number of vertices in the graph and by k the maximum pairwise connectivity
requirement, k = maxu,v∈V {r(u,v)}. We also define a subset T ⊆V of vertices called terminals: a vertex
u ∈ T iff r(u,v)> 0 for some vertex v ∈V .

Even for k = 1, both VC-SNDP and EC-SNDP are known to be APX-hard [2]; in fact the two
problems are equivalent for k = 1, and this special case is commonly referred to as the minimum Steiner
Forest problem.

1.1 Vertex-Connectivity SNDP

While a celebrated result of Jain [15] gives a 2-approximation algorithm for EC-SNDP, no non-trivial
approximation algorithms are known for VC-SNDP, except for restricted special cases. Agrawal et al. [1]
showed a 2-approximation algorithm for the special case when the maximum connectivity requirement
k = 1, that is, the minimum Steiner Forest problem. For k = 2, a factor 2-approximation algorithm
was given by Fleischer [11]. The k-vertex connected spanning subgraph problem, a special case of
VC-SNDP where for all u,v ∈ V r(u,v) = k, has been studied extensively. Cheriyan et al. [6, 7] gave
an O(logk)-approximation algorithm for this case when k ≤

√
n/6, and an O(

√
n/ε)-approximation

algorithm for k ≤ (1− ε)n. For large k, Kortsarz and Nutov [18] improved the preceding bound to an
O(logk ·min{

√
k, log(k) ·n/(n− k)})-approximation. Fakcharoenphol and Laekhanukit [10] improved it

to an O(logn logk)-approximation, and further obtained an O(log2 k)-approximation for k < n/2. Very
recently, Nutov [22] obtained the best currently known approximation algorithm for the problem that
gives an approximation ratio of O(logk · log(n/(n− k)).

Kortsarz et al. [17] showed that VC-SNDP is hard to approximate to within a factor of 2log1−ε n for any
ε > 0, unless NP⊆ DTIME

(
npolylog(n)

)
, when k is polynomially large in n, that is, k = Ω(nδ ) for some

constant δ > 0. This result was subsequently strengthened by Chakraborty et al. [3] to a kε -hardness for all
k > k0, where k0 and ε are fixed positive constants. For constant k, their result holds under the assumption
that P 6= NP, and for super-constant k, under the assumption that NP 6⊆ DTIME

(
nO(logk)

)
. However, the

existence of good approximation algorithms for small values of k has remained an open problem, even for

THEORY OF COMPUTING, Volume 8 (2012), pp. 401–413 402

http://dx.doi.org/10.4086/toc


AN O(k3 logn)-APPROXIMATION ALGORITHM FOR SURVIVABLE NETWORK DESIGN

k ≥ 3. In particular, when each connectivity requirement r(u,v) ∈ {0,3}, the best known approximation
factor is polynomially large (Õ(n) to best of our knowledge) while only an APX-hardness is known. The
main result of our paper is an O(k3 log |T |)-approximation algorithm for VC-SNDP.

We note that subsequent to this work, Nutov [23] has obtained an O(k4 log2 |T |)-approximation
algorithm for the more general version of VC-SNDP, where the costs are on vertices (instead of edges),
and the goal is to find a minimum cost subset V ∗ of vertices such that all vertex-connectivity requirements
are satisfied in the subgraph induced by V ∗.

Single-Source VC-SNDP A special case of VC-SNDP that has received much attention recently is
the single-source version. In this problem there is a special vertex s called the source, and all non-zero
connectivity requirements involve s, that is, if u 6= s and v 6= s, then r(u,v) = 0. Kortsarz et al. [17] showed
that even this restricted special case of VC-SNDP is hard to approximate up to factor Ω(logn) unless
P=NP, and recently Lando and Nutov [20] improved this to (logn)2−ε -hardness of approximation for any
constant ε > 0, under the assumption that NP does not have quasi-polynomial time Las-Vegas algorithms.
We note that both results only hold when k is polynomially large in n, that is, k = Ω(nδ ) for some constant
δ > 0. On the algorithmic side, Chakraborty et al. [3] gave an kO(k2) log4 n-approximation algorithm
for the problem. This result was later independently improved to an O(kO(k) logn)-approximation by
Chekuri and Korula [4], and to an O(k2 logn)-approximation by Chuzhoy and Khanna [8] and Nutov [24].
Subsequently, Chekuri and Korula [5] simplified the analysis of the algorithm of [8]. We note that for
the uniform case, where all non-zero connectivity requirements are k, Chuzhoy and Khanna [8] show a
slightly better O(k logn)-approximation algorithm and the results of [5] extend to this special case. In
this paper we give a simple O(k2 log |T |)-approximation algorithm for single-source VC-SNDP.

We note that subsequent to our work, Nutov [23] gave an O(k logk)-approximation algorithm for
single-source VC-SNDP. Nutov also obtains an improved approximation guarantee of O(k2 log |T |) for
single-source VC-SNDP when the costs are on vertices; the previous best known approximation ratio for
this problem was O(k8 log2 n) [8].

1.2 Element-Connectivity SNDP

A closely related problem to EC-SNDP and VC-SNDP is the element-connectivity SNDP (Elem-SNDP).
The input to Elem-SNDP is the same as for EC-SNDP and VC-SNDP. As before, we define the set T ⊆V
of terminals to be vertices that participate in one or more pairs with a positive connectivity requirement.
Given an Elem-SNDP instance, an element is any edge or any non-terminal vertex in the graph. We
say that a pair s, t of vertices is k-element connected iff for every subset X of at most (k−1) elements,
s and t remain connected by a path when X is removed from the graph. In other words, there are k
element-disjoint paths connecting s to t; these paths are allowed to share terminals. Another way to
understand element-connectivity is to imagine that non-terminal vertices are placed on every edge, and a
pair s, t is k-element connected iff there are k paths from s to t that do not share any non-terminal vertices.
The goal in Elem-SNDP is to select a minimum-cost subset E∗ of edges, such that in the graph induced
by E∗, each pair u,v of vertices is r(u,v)-element connected.

Observe that in any graph, if a pair s, t is k-vertex connected, then it is also k-element connected,
and similarly, if a pair s, t is k-element connected, then it is also k-edge connected. But the converse
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relationships do not hold, that is, if a pair s, t is k-edge connected, then it need not be k-element connected,
and similarly, if a pair s, t is k-element connected, then it need not be k-vertex connected. Thus the notion
of element-connectivity resides in between edge-connectivity and vertex-connectivity.

Elem-SNDP was introduced in [16] as a problem of intermediate difficulty between edge-connectivity
and vertex-connectivity. Similar to edge-connectivity, element-connectivity is transitive, that is, for any
three terminals t1, t2, and t3, if t1 and t2 are k-element connected, and t2 and t3 are k-element connected,
then t1 and t3 are k-element connected as well. Note that this transitivity property does not hold for vertex
connectivity, as illustrated in Figure 1 for k = 2.

t1 t2 t3

Figure 1: Each pair (ti, t j), 1≤ i < j ≤ 3 above is 2-element connected (and hence 2-edge connected).
The pairs (t1, t2) and (t2, t3) are 2-vertex connected but the pair (t1, t3) is only 1-vertex connected.

Jain et al. [16] give a primal-dual O(logk)-approximation for this problem. Subsequently, Fleischer
et al. [12] and Cheriyan et al. [7] gave a 2-approximation algorithm for Elem-SNDP via the iterative
rounding technique, thus matching the 2-approximation guarantee of Jain [15] for EC-SNDP. We use the
2-approximation result for Elem-SNDP as a building block for our algorithms.

1.3 Our Results and Techniques

Our main result is as follows.

Theorem 1.1. There is a polynomial-time randomized O(k3 log |T |)-approximation algorithm for VC-
SNDP, where k is the largest pairwise connectivity requirement.

The proof of this result is based on a randomized reduction that maps a given instance of VC-SNDP
to a family of instances of Elem-SNDP. As noted earlier, the notion of element-connectivity is strictly
weaker than vertex-connectivity. Our result shows that, nonetheless, an instance of VC-SNDP can be
reduced to a collection of Elem-SNDP instances.

Specifically, given an instance of VC-SNDP, our reduction creates O(k3 log |T |) instances of Elem-
SNDP, where each instance is defined over an identical copy of the original graph, but with different
connectivity requirements. The connectivity requirements for each instance are a carefully selected
subset of the original connectivity requirements, and therefore, the value of the optimal solution to each
resulting Elem-SNDP instance is bounded by the cost of the optimal solution to the original problem.
With high probability, the reduction has the property that any collection of edges that is a feasible solution
for each one of the Elem-SNDP instances generated above, is also a feasible solution for the given
VC-SNDP instance. We can thus use the known 2-approximation algorithm for Elem-SNDP on each one
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of the O(k3 log |T |) instances created, and combine them to obtain the desired result. We note here that
our reduction also works for the more general variation of VC-SNDP, where the costs are on vertices
instead of edges, and the goal is to select a minimum-cost subset V ∗ of vertices such that all connectivity
requirements are satisfied in the subgraph induced by V ∗.

Finally, we show that our ideas also yield a simple algorithm that gives an O(k2 log |T |)-approximation
for the single-source VC-SNDP problem.

Organization: We present the proof of Theorem 1.1 in Section 2. Section 3 presents an alternative
proof of the O(k2 log |T |)-approximation result for single-source VC-SNDP. In Section 4 we show a
connection between our techniques and a well-studied notion in combinatorics and coding theory, namely,
cover-free families. Using this connection we show that our bounds are essentially tight in that similar
techniques cannot give significantly better approximation guarantees. Finally, we conclude in Section 5
with some directions for future work.

2 Algorithm for VC-SNDP

Recall that in VC-SNDP we are given an undirected graph G(V,E) with costs on edges, and an integer
connectivity requirement r(u,v) for all u,v ∈V . Additionally, we have a subset T ⊆V of terminals, and
r(u,v)> 0 only if u,v ∈ T . The pairs of terminals with non-zero connectivity requirements are called
source-sink pairs. The goal is to select a minimum-cost subset E∗ ⊆ E of edges, such that in the subgraph
of G induced by E∗, denoted G[E∗], every pair u,v is r(u,v)-vertex connected. We denote by k the
maximum connectivity requirement, k = maxu,v∈V {r(u,v)}, and we will use OPT to denote the cost of
an optimal solution to the given VC-SNDP instance. Let (G,T,r) denote the input instance to VC-SNDP.

At a high-level, our algorithm is a polynomial-time randomized reduction from VC-SNDP to Elem-
SNDP. Given an instance (G,T,r) of VC-SNDP, we create p identical copies of our input graph G, say
G1,G2, . . . ,Gp, where p is a parameter to be specified later. For each copy Gi, we define a subset Ti ⊆ T
of terminals. We then view Gi as an instance of element-connectivity SNDP, where the connectivity
requirements are induced by the set Ti of terminals as follows. For each s, t ∈ Ti the new connectivity
requirement is the same as the original one, and for all other pairs, the connectivity requirements are
0. Observe that for each Gi the cost of an optimal solution for the induced Elem-SNDP instance is
at most OPT. We then apply the 2-approximation algorithm of [12, 7] to each one of the p instances
of the k-element connectivity problem. Let Ei denote the set of edges output by the 2-approximation
algorithm on the instance defined on Gi. Our final solution is Ẽ = E1∪E2∪·· ·∪Ep. Since any solution
to the original VC-SNDP instance is also a feasible solution for each one of the p element-connectivity
instances created above, the cost of the solution above is bounded by 2p ·OPT.

We now show that for p = O(k3 log |T |), there exist subsets T1,T2, . . . ,Tp such that the solution Ẽ
produced above is a feasible solution for VC-SNDP. Moreover, we show a simple randomized algorithm
to create the sets T1,T2, . . . ,Tp.

Definition 2.1. Given an instance (G,T,r) of VC-SNDP, let M be the set of the source-sink pairs. We
say that a family {T1, . . . ,Tp} of subsets of T is k-resilient iff for each source-sink pair (s, t) ∈M, the
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following condition holds: for each subset X ⊆ T \ {s, t} of size at most (k− 1), there is a subset Ti,
1≤ i≤ p, such that s, t ∈ Ti and X ∩Ti = /0.

We show below that a k-resilient family of subsets exists for p = O(k3 log |T |), and give a poly-time
randomized algorithm to find such a family with high probability. We start by proving that such a family
guarantees that the algorithm produces a feasible solution.

Lemma 2.2. Let {T1, . . . ,Tp} be a k-resilient family of subsets. For each 1≤ i≤ p, let Ei be any feasible
solution to the corresponding Elem-SNDP instance defined by Ti on Gi, and let Ẽ =

⋃p
i=1 Ei. Then Ẽ is a

feasible solution to the input VC-SNDP instance.

Proof. Let (s, t) ∈M be any source-sink pair, and let X ⊆V \{s, t} be any collection of at most (r(s, t)−
1)≤ (k−1) vertices. It is enough to show that the removal of X from the graph G[Ẽ] does not separate s
from t. Let X ′ = X ∩T . Since {T1, . . . ,Tp} is a k-resilient family of subsets, there is some Ti such that
s, t ∈ Ti while Ti∩X ′ = /0. Then X is a set of non-terminal vertices with respect to Ti. Recall that set Ei of
edges defines a feasible solution to the element-connectivity SNDP instance corresponding to Ti. Since s
is r(s, t)-element connected to t in the graph G[Ei], the removal of set X from the graph G[Ei] can not
disconnect s from t.

We now show how to construct a k-resilient family of subsets {T1, . . . ,Tp}. Let p = 128k3 log |T |, and
set q = p/(2k) = 64k2 log |T |. Each terminal t ∈ T selects q random indices uniformly and independently
from the set {1,2, . . . , p} (repetitions are allowed). Let φ(t) denote the set of indices chosen by the
terminal t. For each 1≤ i≤ p, we then define Ti = {t | i ∈ φ(t)}.

Lemma 2.3. With high probability, the resulting family {T1, . . . ,Tp} of subsets is k-resilient.

Proof. We extend the definition of φ() to an arbitrary subset Z of vertices by defining

φ(Z) =
⋃

t∈Z∩T

φ(t) .

Fix any source-sink pair (s, t). Let X be an arbitrary set of at most (k− 1) terminals that does not
include s or t. Note that |φ(X)| ≤ (k− 1)q < p/2. We say that the bad event E1(s, t,X) occurs if
|φ(s)∩φ(X)| ≥ 3q/4. The expected value of |φ(s)∩φ(X)| is at most q/2 since at least half the indices
in {1,2, . . . , p} are disjoint from φ(X). Now using Chernoff bounds (see page 72 in [21])

Pr[E1(s, t,X)]≤ Pr
[
|φ(s)∩φ(X)| ≥

(
1+

1
2

)
q
2

]
≤ e−

q
2 ·(

1
2 )

2· 14 ≤ e−
q
32 .

We say that the bad event E2(s, t,X) occurs if φ(s)∩φ(t)⊆ φ(X). We say that the set X is a bad set for a
pair (s, t) if the event E2(s, t,X) occurs. Note that if there is no bad set X of size at most (k−1) for every
pair (s, t) ∈M, then {T1, . . . ,Tp} is a k-resilient family.

We observe that if event E1(s, t,X) does not happen, then |φ(s)\φ(X)| ≥ q/4, so

Pr
[
E2(s, t,X)

∣∣∣ E1(s, t,X)
]
≤
(

1− q/4
p

)q

≤ e−
q2
4p ≤ e−

q
8k .
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Thus we can bound the probability of the event E2(s, t,X) as follows:

Pr[E2(s, t,X)] = Pr[E2(s, t,X) | E1(s, t,X)]Pr[E1(s, t,X)]+Pr
[
E2(s, t,X)

∣∣∣ E1(s, t,X)
]

Pr
[
E1(s, t,X)

]
≤ Pr[E1(s, t,X)]+Pr

[
E2(s, t,X)

∣∣∣ E1(s, t,X)
]

≤ e−
q
32 + e−

q
8k

< |T |−4k.

Hence, using the union bound, the probability that some bad set X of at most (k−1) terminals exists
for any pair (s, t) can be bounded by |T |−2k. The lemma follows.

Combining Lemmas 2.2 and 2.3, we thus obtain the following theorem.

Theorem 2.4. Given a VC-SNDP instance (G,T,r), there is a polynomial-time randomized algorithm that
creates p = O(k3 log |T |) instances of Elem-SNDP, say (G1,T1,r1),(G2,T2,r2), . . . .,(Gp,Tp,rp), such
that with high probability the following holds: if we are given, for each 1≤ i≤ p, any feasible solution
Ei to the Elem-SNDP instance (Gi,Ti,ri), then

⋃p
i=1 Ei is a feasible solution to the VC-SNDP instance

(G,T,r). Moreover, for 1≤ i≤ p, the graph Gi = G, Ti ⊆ T , and the requirement function ri is obtained
by restricting r to Ti.

Our main result follows as an easy corollary.

Corollary 2.5. There is a randomized O(k3 log |T |)-approximation algorithm for VC-SNDP.

Proof. With probability at least 1−|T |−2k, the algorithm above generates a feasible solution for the given
VC-SNDP instance. We can verify the feasibility of the generated solution by performing a max-flow
computation for each source-sink pair. If the solution is not feasible, then we can use the trivial solution
that solves optimally for each source-sink pair (a min-cost flow computation) and outputs union of all
pairwise solutions. The cost of this trivial solution is at most |T |2 ·OPT. Thus the expected approximation
ratio of the combined algorithm is bounded by(

1− 1
|T |2k

)
O(k3 log |T |)+

(
1
|T |2k

)
|T |2 = O(k3 log |T |) .

Remark 2.6. We note that this result implies that the standard set-pair relaxation for VC-SNDP [13] has
an integrality gap of O(k3 log |T |). This follows from the fact that the 2-approximation result of [12, 7] also
establishes an upper bound of 2 on the integrality gap of the set-pair relaxation for element-connectivity.
We also note that a lower bound of Ω̃(k1/3) is known on the integrality gap of the set-pair relaxation for
VC-SNDP [3].

Remark 2.7. We also note that our reduction carries over to the node-weighted version of VC-SNDP, and
in particular an α-approximation algorithm for the node-weighted element-connectivity SNDP implies
an O(αk3 log |T |)-approximation for the node-weighted VC-SNDP.
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3 Algorithm for Single-Source VC-SNDP

In this section we show that an O(k2 log |T |)-approximation algorithm can be easily achieved using the
above ideas for the single-source version of VC-SNDP.

Recall that the input to the single-source VC-SNDP is a graph G(V,E) with a special vertex s called
the source, and a subset T of terminals, where for each t ∈ T , we are given a connectivity requirement
r(s, t)≤ k. We assume without loss of generality that s 6∈ T . The goal is to select a minimum-cost subset
E∗ ⊆ E of edges, such that in the induced subgraph G[E∗], every terminal t ∈ T is r(s, t)-vertex connected
to s. This is clearly a special case of VC-SNDP, where all source-sink pairs are of the form {(s, t)}t∈T .
As before, we create a family {T1, . . . ,Tp} of subsets of terminals, Ti ⊆ T for all 1 ≤ i ≤ p. We also
create p identical copies of our input graph G, say G1, . . . ,Gp. For each Gi we solve the single-source
element-connectivity SNDP instance with connectivity requirements induced by terminals in Ti. Let Ei

be the 2-approximate solution to instance Gi. Our final solution is Ẽ =
⋃p

i=1 Ei. Clearly, the cost of the
solution is at most 2p ·OPT.

Definition 3.1. A family {T1, . . . ,Tp} of subsets of terminals is weakly k-resilient iff for each terminal
t ∈ T , for each subset X ⊆ T \{t} of at most (k−1) terminals, there is i : 1≤ i≤ p, such that t ∈ Ti and
X ∩Ti = /0.

Lemma 3.2. Let {T1, . . . ,Tp} be a weakly k-resilient family of subsets. For each 1≤ i≤ p, let Ei be any
feasible solution to the corresponding Elem-SNDP instance defined by Ti on Gi, and let Ẽ =

⋃p
i=1 Ei.

Then Ẽ is a feasible solution to the input VC-SNDP instance.

Proof. Let t ∈ T and let X ⊆V \{s, t} be any subset of at most r(s, t)−1≤ (k−1) vertices excluding s
and t. It is enough to prove that the removal of X from the graph G[Ẽ] does not disconnect s from t. Let
X ′ = X ∩T . Since {T1, . . . ,Tp} is a weakly k-resilient family, there is some i, 1≤ i≤ p, such that t ∈ Ti

and Ti∩X ′ = /0. Consider the solution Ei to the corresponding k-element connectivity instance. Since
vertices of X are non-terminal vertices for the instance Gi, their removal from the graph G[Ei] does not
disconnect s from t.

We now show a randomized algorithm for constructing a weakly k-resilient family of subsets. Let
p= 4k2 log |T | and q= p/(2k)= 2k log |T |. Each terminal t ∈ T selects q indices from the set {1,2, . . . , p}
uniformly at random with repetitions. Let φ(t) denote the set of indices chosen by the terminal t. For
each 1≤ i≤ p, we then define Ti = {t | i ∈ φ(t)}.

Lemma 3.3. With high probability, the resulting family of subsets {T1, . . . ,Tp} is weakly k-resilient.

Proof. Let t ∈ T be any terminal and let X be any subset of at most r(s, t)−1≤ (k−1) terminals. As
before, we extend the function φ to an arbitrary subset Z of vertices by defining φ(Z) =

⋃
t∈Z∩T φ(t). We

say that bad event E(t,X) occurs iff φ(t)⊆ φ(X). The probability of the event E(t,X) is at most(
1− kq

p

)q

=

(
1
2

)q

≤ |T |−2k .

Therefore, by union bound, the probability that the event E(t,X) happens for some terminal t and a set X
of at most (k−1) terminals, can be bounded by |T |−k. The lemma follows.
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Combining Lemmas 3.2 and 3.3, we obtain the following corollary.

Corollary 3.4. There is a randomized O(k2 log |T |)-approximation algorithm for single-source VC-
SNDP.

Proof. With probability at least 1−|T |−k, the algorithm above generates a feasible solution for the given
single-source VC-SNDP instance. We can verify the feasibility of the generated solution by performing
a max-flow computation for each source-terminal pair. If the solution is not feasible, then we can use
the trivial solution that solves optimally for each source-terminal pair (a min-cost flow computation) and
outputs union of all pairwise solutions. The cost of this trivial solution is at most |T | ·OPT. Thus the
expected approximation ratio of the combined algorithm is bounded by(

1− 1
|T |k

)
O(k2 log |T |)+

(
1
|T |k

)
|T |= O(k2 log |T |) .

4 Resilient and cover-free families

The notion of a k-resilient and weakly k-resilient families is closely related to a well-studied notion in
coding theory and combinatorics, namely, cover-free families of sets. A family F of sets over a universe
U = {1,2, . . . , p} is said to be r-cover-free if for all distinct A,S1, . . . ,Sr ∈ F, it satisfies the property that
A 6⊆

⋃r
j=1 S j. This is precisely the property underlying our construction of a weakly k-resilient family. In

particular, {T1,T2, . . . ,Tp} is weakly k-resilient iff F = {φ(t) | t ∈ T} is a (k−1)-cover-free family.
Let N(r,λ ) denote the smallest integer p such that there exists an r-cover-free family with λ sets over

a universe of p elements. It is easy to see that the smaller the value N(r,λ ), the better the approximation
guarantee achieved by the algorithm of Section 3. A classical result of Dyachkov and Rykov [9] (see the
note by Füredi [14] for a simple proof of this lower bound result) shows that

N(r,λ ) = Ω

(
r2 logλ

logr

)
.

An immediate corollary of this result is that for any weakly k-resilient family for a set T of terminals,
the parameter p must be

Ω

(
k2 log |T |

logk

)
.

Thus the bound achieved by the simple randomized construction given in Lemma 3.3 is tight to within an
O(logk) factor.

Kumar, Rajagopalan, and Sahai [19] gave an elegant deterministic construction for cover-free families
based on Reed-Solomon codes. The construction gives slightly weaker guarantees than the randomized
construction. For sake of completeness, we briefly describe their construction. Let Fq = {u1,u2, . . . ,uq}
be a finite field for some prime q. Moreover, let Fq,d be the set of all polynomials over Fq of degree
at most d where d = q/k. Consider the family of sets F = {S f | f ∈ Fq,d+1} defined over the universe
U = Fq×Fq where S f = {〈u1, f (u1)〉, . . . ,〈uq, f (uq)〉}. Then F is a (k−1)-cover-free family since any
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two distinct polynomials in Fq,d can agree on at most d points. Since the size of the underlying universe
U is p = q2 and |F|= Ω(qd), we get a deterministic construction for a weakly k-resilient family with

p = O
(

k2 log2 |T |
log2(k log |T |)

)
.

A natural generalization of r-cover-free family is a (w,r)-cover-free family that is defined as fol-
lows. A family F of sets over a universe U = {1,2, . . . , p} is said to be (w,r)-cover-free if for all any
A1,A2, . . . ,Aw ∈ F and any other S1, . . . ,Sr ∈ F, it satisfies the property that

⋂w
i=1 Ai 6⊆

⋃r
j=1 S j. It is

easy to see that {T1,T2, . . . ,Tp} is k-resilient iff F = {φ(t) | t ∈ T} is a (2,k−1)-cover-free family. Let
N(w,r,λ ) denote the smallest integer p such that there exists a (w,r)-cover-free family with λ sets over
a universe of p elements. Stinson, Wei, and Zhu [25] showed that for any r ≥ 1, there exists a λ0 that
depends only on r, such that for all λ ≥ λ0

N(2,r,λ ) = Ω

(
r3 logλ

logr

)
.

An immediate corollary of this result is that for any k-resilient family for a set T of terminals, the
parameter p must be

Ω

(
k3 log |T |

logk

)
.

Thus the bound achieved by the simple randomized construction given in Lemma 2.3 is tight to within an
O(logk) factor.

5 Conclusions

We presented a simple O(k3 log |T |)-approximation algorithm for VC-SNDP. Combined with the pre-
viously known kΩ(1)-hardness for this problem, the result presented here clarifies the approximability
threshold of the general VC-SNDP problem. In particular, a polynomial factor dependence on k is both
necessary and sufficient (modulo a logarithmic factor). An interesting question is whether VC-SNDP
admits a constant factor approximation when the parameter k is a constant.

In contrast to the general VC-SNDP problem, there is a striking gap between upper and lower bounds
for single-source VC-SNDP. In particular, when k is polynomially large in n, the best known hardness
factor is Ω(log2−ε n) (for any constant ε) while the best currently achievable approximation ratio is
O(k logk). It is an interesting open question to narrow this gap.
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